Skip to content

Commit

Permalink
Rework theremin script
Browse files Browse the repository at this point in the history
  • Loading branch information
doegox committed Nov 30, 2024
1 parent 23e6aa4 commit ca15bbd
Showing 1 changed file with 167 additions and 71 deletions.
238 changes: 167 additions & 71 deletions client/pyscripts/theremin.py
Original file line number Diff line number Diff line change
@@ -1,81 +1,177 @@
#!/usr/bin/python3

### Parameters
import os
import subprocess
import signal
import numpy as np
from pyaudio import PyAudio, paFloat32, paContinue

# Sound output parameters
volume = 1.0
sample_buf_size = 44
sampling_freq = 44100 #Hz
sampling_freq = 44100 # Hz

# Frequency generator parameters
min_freq = 200 #Hz
max_freq = 2000 #Hz
min_freq = 100 # Hz
max_freq = 6000 # Hz

# Proxmark3 parameters
pm3_client="/usr/local/bin/proxmark3"
pm3_reader_dev_file="/dev/ttyACM0"
pm3_tune_cmd="hf tune"


### Modules
import numpy
import pyaudio
from select import select
from subprocess import Popen, DEVNULL, PIPE


### Main program
p = pyaudio.PyAudio()

# For paFloat32 sample values must be in range [-1.0, 1.0]
stream = p.open(format=pyaudio.paFloat32,
channels=1,
rate=sampling_freq,
output=True)

# Initial voltage to frequency values
min_v = 100.0
max_v = 0.0
v = 0
out_freq = min_freq

# Spawn the Proxmark3 client
pm3_proc = Popen([pm3_client, pm3_reader_dev_file, "-c", pm3_tune_cmd], bufsize=0, env={}, stdin=DEVNULL, stdout=PIPE, stderr=DEVNULL)
mv_recbuf = ""

# Read voltages from the Proxmark3, generate the sine wave, output to soundcard
sample_buf = [0.0 for x in range(0, sample_buf_size)]
i = 0
sinev = 0
while True:

# Read Proxmark3 client's stdout and extract voltage values
if(select([pm3_proc.stdout], [], [], 0)[0]):

b = pm3_proc.stdout.read(256).decode("ascii")
if "Done" in b:
break;
for c in b:
if c in "0123456789 mV":
mv_recbuf += c
else:
mv_recbuf = ""
if mv_recbuf[-3:] == " mV":
v = int(mv_recbuf[:-3]) / 1000
if v < min_v:
min_v = v - 0.001
if v > max_v:
max_v = v
pm3_client = "pm3"
pm3_tune_cmd = "hf tune --value"

frequency = 440
buffer = []


def find_zero_crossing_index(array):
for i in range(1, len(array)):
if array[i-1] < 0 and array[i] >= 0:
return i
return None # Return None if no zero-crossing is found


def generate_sine_wave(frequency, sample_rate, duration, frame_count):
"""Generate a sine wave at a given frequency."""
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
wave = np.sin(2 * np.pi * frequency * t)
return wave[:frame_count]


# PyAudio Callback function
def pyaudio_callback(in_data, frame_count, time_info, status):
# if in_data is None:
# return (in_data, pyaudio.paContinue)
global frequency
global buffer
wave = generate_sine_wave(frequency, sampling_freq, 0.01, frame_count*2)
i = find_zero_crossing_index(buffer)
if i is None:
buffer = wave
else:
buffer = np.concatenate((buffer[:i], wave))
data = (buffer[:frame_count] * volume).astype(np.float32).tobytes()
buffer = buffer[frame_count:]
return (data, paContinue)
# pyaudio.paComplete


def silent_pyaudio():
"""
Lifted and adapted from https://stackoverflow.com/questions/67765911/
PyAudio is noisy af every time you initialise it, which makes reading the
log output rather difficult. The output appears to be being made by the
C internals, so we can't even redirect the logs with Python's logging
facility. Therefore the nuclear option was selected: swallow all stderr
and stdout for the duration of PyAudio's use.
"""

# Open a pair of null files
null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)]
# Save the actual stdout (1) and stderr (2) file descriptors.
save_fds = [os.dup(1), os.dup(2)]
# Assign the null pointers to stdout and stderr.
os.dup2(null_fds[0], 1)
os.dup2(null_fds[1], 2)
pyaudio = PyAudio()
os.dup2(save_fds[0], 1)
os.dup2(save_fds[1], 2)
# Close all file descriptors
for fd in null_fds + save_fds:
os.close(fd)
return pyaudio


def run_pm3_cmd(callback):
# Start the process
process = subprocess.Popen(
[pm3_client, '-c', pm3_tune_cmd],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
bufsize=1, # Line buffered
shell=False
)

# Read the output line by line as it comes
try:
with process.stdout as pipe:
for line in pipe:
# Process each line
l = line.strip() # Strip to remove any extraneous newline characters
callback(l)
except Exception as e:
print(f"An error occurred: {e}")
finally:
# Ensure the subprocess is properly terminated
process.terminate()
process.wait()


def linear_to_exponential_freq(v, min_v, max_v, min_freq, max_freq):
# First, map v to a range between 0 and 1
if max_v != min_v:
normalized_v = (v - min_v) / (max_v - min_v)
else:
normalized_v = 0.5
normalized_v = 1 - normalized_v

# Calculate the ratio of the max frequency to the min frequency
freq_ratio = max_freq / min_freq

# Calculate the exponential frequency using the mapped v
freq = min_freq * (freq_ratio ** normalized_v)
return freq


class foo():
def __init__(self):
self.p = silent_pyaudio()
# For paFloat32 sample values must be in range [-1.0, 1.0]
self.stream = self.p.open(format=paFloat32,
channels=1,
rate=sampling_freq,
output=True,
stream_callback=pyaudio_callback)

# Initial voltage to frequency values
self.min_v = 50000.0
self.max_v = 0.0

# Setting the signal handler for SIGINT (Ctrl+C)
signal.signal(signal.SIGINT, self.signal_handler)

# Start the stream
self.stream.start_stream()

def __exit__(self):
self.stream.stop_stream()
self.stream.close()
self.p.terminate()

def signal_handler(self, sig, frame):
print("\nYou pressed Ctrl+C! Press Enter")
self.__exit__()

def callback(self, line):
if 'mV' not in line:
return
v = int(line.split(' ')[1])
if v == 0:
return
self.min_v = min(self.min_v, v)
self.max_v = max(self.max_v, v)

# Recalculate the audio frequency to generate
out_freq = (max_freq - min_freq) * (max_v - v) / (max_v - min_v) \
+ min_freq

# Generate the samples and write them to the soundcard
sinevs = out_freq / sampling_freq * numpy.pi * 2
sample_buf[i] = sinev
sinev += sinevs
sinev = sinev if sinev < numpy.pi * 2 else sinev - numpy.pi * 2
i = (i + 1) % sample_buf_size
if not i:
stream.write((numpy.sin(sample_buf) * volume).
astype(numpy.float32).tobytes())
global frequency
frequency = linear_to_exponential_freq(v, self.min_v, self.max_v, min_freq, max_freq)

# frequency = max_freq - ((max_freq - min_freq) * (v - self.min_v) / (self.max_v - self.min_v) + min_freq)
#frequency = (frequency + new_frequency)/2


def main():
f = foo()
run_pm3_cmd(f.callback)


if __name__ == "__main__":
main()

0 comments on commit ca15bbd

Please sign in to comment.