-
Notifications
You must be signed in to change notification settings - Fork 136
/
set2set.py
57 lines (50 loc) · 2.17 KB
/
set2set.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
import torch.nn as nn
from torch.nn import init
import torch.nn.functional as F
import numpy as np
class Set2Set(nn.Module):
def __init__(self, input_dim, hidden_dim, act_fn=nn.ReLU, num_layers=1):
'''
Args:
input_dim: input dim of Set2Set.
hidden_dim: the dim of set representation, which is also the INPUT dimension of
the LSTM in Set2Set.
This is a concatenation of weighted sum of embedding (dim input_dim), and the LSTM
hidden/output (dim: self.lstm_output_dim).
'''
super(Set2Set, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.num_layers = num_layers
if hidden_dim <= input_dim:
print('ERROR: Set2Set output_dim should be larger than input_dim')
# the hidden is a concatenation of weighted sum of embedding and LSTM output
self.lstm_output_dim = hidden_dim - input_dim
self.lstm = nn.LSTM(hidden_dim, input_dim, num_layers=num_layers, batch_first=True)
# convert back to dim of input_dim
self.pred = nn.Linear(hidden_dim, input_dim)
self.act = act_fn()
def forward(self, embedding):
'''
Args:
embedding: [batch_size x n x d] embedding matrix
Returns:
aggregated: [batch_size x d] vector representation of all embeddings
'''
batch_size = embedding.size()[0]
n = embedding.size()[1]
hidden = (torch.zeros(self.num_layers, batch_size, self.lstm_output_dim).cuda(),
torch.zeros(self.num_layers, batch_size, self.lstm_output_dim).cuda())
q_star = torch.zeros(batch_size, 1, self.hidden_dim).cuda()
for i in range(n):
# q: batch_size x 1 x input_dim
q, hidden = self.lstm(q_star, hidden)
# e: batch_size x n x 1
e = embedding @ torch.transpose(q, 1, 2)
a = nn.Softmax(dim=1)(e)
r = torch.sum(a * embedding, dim=1, keepdim=True)
q_star = torch.cat((q, r), dim=2)
q_star = torch.squeeze(q_star, dim=1)
out = self.act(self.pred(q_star))
return out