-
Notifications
You must be signed in to change notification settings - Fork 136
/
Copy pathaggregators.py
63 lines (55 loc) · 2.35 KB
/
aggregators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch
import torch.nn as nn
from torch.autograd import Variable
import random
"""
Set of modules for aggregating embeddings of neighbors.
"""
class MeanAggregator(nn.Module):
"""
Aggregates a node's embeddings using mean of neighbors' embeddings
"""
def __init__(self, features, cuda=False, gcn=False):
"""
Initializes the aggregator for a specific graph.
features -- function mapping LongTensor of node ids to FloatTensor of feature values.
cuda -- whether to use GPU
gcn --- whether to perform concatenation GraphSAGE-style, or add self-loops GCN-style
"""
super(MeanAggregator, self).__init__()
self.features = features
self.cuda = cuda
self.gcn = gcn
def forward(self, nodes, to_neighs, num_sample=10):
"""
nodes --- list of nodes in a batch
to_neighs --- list of sets, each set is the set of neighbors for node in batch
num_sample --- number of neighbors to sample. No sampling if None.
"""
# Local pointers to functions (speed hack)
_set = set
if not num_sample is None:
_sample = random.sample
samp_neighs = [_set(_sample(to_neigh,
num_sample,
)) if len(to_neigh) >= num_sample else to_neigh for to_neigh in to_neighs]
else:
samp_neighs = to_neighs
if self.gcn:
samp_neighs = [samp_neigh + set([nodes[i]]) for i, samp_neigh in enumerate(samp_neighs)]
unique_nodes_list = list(set.union(*samp_neighs))
unique_nodes = {n:i for i,n in enumerate(unique_nodes_list)}
mask = Variable(torch.zeros(len(samp_neighs), len(unique_nodes)))
column_indices = [unique_nodes[n] for samp_neigh in samp_neighs for n in samp_neigh]
row_indices = [i for i in range(len(samp_neighs)) for j in range(len(samp_neighs[i]))]
mask[row_indices, column_indices] = 1
if self.cuda:
mask = mask.cuda()
num_neigh = mask.sum(1, keepdim=True)
mask = mask.div(num_neigh)
if self.cuda:
embed_matrix = self.features(torch.LongTensor(unique_nodes_list).cuda())
else:
embed_matrix = self.features(torch.LongTensor(unique_nodes_list))
to_feats = mask.mm(embed_matrix)
return to_feats