-
Notifications
You must be signed in to change notification settings - Fork 0
/
stock_pred.py
85 lines (56 loc) · 2.26 KB
/
stock_pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from matplotlib.pylab import rcParams
rcParams['figure.figsize']=20,10
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler(feature_range=(0,1))
df=pd.read_csv("NSE-TATA.csv")
df.head()
df["Date"]=pd.to_datetime(df.Date,format="%Y-%m-%d")
df.index=df['Date']
plt.figure(figsize=(16,8))
plt.plot(df["Close"],label='Close Price history')
from keras.models import Sequential
from keras.layers import LSTM,Dropout,Dense
data=df.sort_index(ascending=True,axis=0)
new_dataset=pd.DataFrame(index=range(0,len(df)),columns=['Date','Close'])
for i in range(0,len(data)):
new_dataset["Date"][i]=data['Date'][i]
new_dataset["Close"][i]=data["Close"][i]
new_dataset.index=new_dataset.Date
new_dataset.drop("Date",axis=1,inplace=True)
final_dataset=new_dataset.values
train_data=final_dataset[0:987,:]
valid_data=final_dataset[987:,:]
scaler=MinMaxScaler(feature_range=(0,1))
scaled_data=scaler.fit_transform(final_dataset)
x_train_data,y_train_data=[],[]
for i in range(60,len(train_data)):
x_train_data.append(scaled_data[i-60:i,0])
y_train_data.append(scaled_data[i,0])
x_train_data,y_train_data=np.array(x_train_data),np.array(y_train_data)
x_train_data=np.reshape(x_train_data,(x_train_data.shape[0],x_train_data.shape[1],1))
lstm_model=Sequential()
lstm_model.add(LSTM(units=50,return_sequences=True,input_shape=(x_train_data.shape[1],1)))
lstm_model.add(LSTM(units=50))
lstm_model.add(Dense(1))
lstm_model.compile(loss='mean_squared_error',optimizer='adam')
lstm_model.fit(x_train_data,y_train_data,epochs=1,batch_size=1,verbose=2)
inputs_data=new_dataset[len(new_dataset)-len(valid_data)-60:].values
inputs_data=inputs_data.reshape(-1,1)
inputs_data=scaler.transform(inputs_data)
X_test=[]
for i in range(60,inputs_data.shape[0]):
X_test.append(inputs_data[i-60:i,0])
X_test=np.array(X_test)
X_test=np.reshape(X_test,(X_test.shape[0],X_test.shape[1],1))
closing_price=model.predict(X_test)
closing_price=scaler.inverse_transform(closing_price)
lstm_model.save("saved_lstm_model.h5")
train_data=new_dataset[:987]
valid_data=new_dataset[987:]
valid_data['Predictions']=prediction_closing
plt.plot(train_data["Close"])
plt.plot(valid_data[['Close',"Predictions"]])