-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSubcategoryEmbedding.agda
306 lines (261 loc) · 14.6 KB
/
SubcategoryEmbedding.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
-- vim: nowrap
open import Data.Nat
open import Order.Instances.Discrete
open import Order.Instances.Disjoint
open import Cat.Prelude
open import Cat.Functor.Base
open import Cat.Functor.Properties
open import Cat.Diagram.Monad
import Cat.Reasoning as Cat
open import Mugen.Prelude
open import Mugen.Cat.Instances.Endomorphisms
open import Mugen.Cat.Instances.Indexed
open import Mugen.Cat.Instances.StrictOrders
open import Mugen.Cat.Monad
open import Mugen.Cat.HierarchyTheory
open import Mugen.Order.StrictOrder
open import Mugen.Order.Instances.Copower
import Mugen.Order.Reasoning as Reasoning
--------------------------------------------------------------------------------
-- The Universal Embedding Theorem
-- Section 3.4, Lemma 3.9
module Mugen.Cat.HierarchyTheory.Universality.SubcategoryEmbedding {o o' r}
(H : Hierarchy-theory (o ⊔ o') (r ⊔ o')) {I : Type o'} ⦃ Discrete-I : Discrete I ⦄
(Δ₋ : ⌞ I ⌟ → Poset (o ⊔ o') (r ⊔ o')) where
--------------------------------------------------------------------------------
-- Notation
--
-- We begin by defining some useful notation.
private
open Strictly-monotone
open Algebra-hom
open Cat (Strict-orders (o ⊔ o') (r ⊔ o'))
module Δ₋ i = Poset (Δ₋ i)
module H = Monad H
⌞Δ₋⌟ : I → Type (o ⊔ o')
⌞Δ₋⌟ i = ⌞ Δ₋ i ⌟
I-is-set : is-set I
I-is-set = Discrete→is-set Discrete-I
-- Δ is made public for proving the main theorem
Δ : Poset (o ⊔ o') (r ⊔ o')
Δ = Copower (el! Nat) (Disjoint (el I I-is-set) Δ₋)
module Δ = Poset Δ
private
H⟨Δ⟩ : Poset (o ⊔ o') (r ⊔ o')
H⟨Δ⟩ = H.M₀ Δ
module H⟨Δ⟩ = Reasoning H⟨Δ⟩
SOrd : Precategory (lsuc (o ⊔ r ⊔ o')) (o ⊔ r ⊔ o')
SOrd = Strict-orders (o ⊔ o') (r ⊔ o')
module SOrd = Cat SOrd
SOrdᴴ : Precategory (lsuc (o ⊔ r ⊔ o')) (lsuc (o ⊔ r ⊔ o'))
SOrdᴴ = Eilenberg-Moore SOrd H
module SOrdᴴ = Cat SOrdᴴ
Uᴴ : Functor SOrdᴴ SOrd
Uᴴ = Forget SOrd H
Fᴴ : Functor SOrd SOrdᴴ
Fᴴ = Free SOrd H
Fᴴ₀ : Poset (o ⊔ o') (r ⊔ o') → Algebra SOrd H
Fᴴ₀ = Fᴴ .Functor.F₀
Fᴴ₁ : {X Y : Poset (o ⊔ o') (r ⊔ o')} → Hom X Y → SOrdᴴ.Hom (Fᴴ₀ X) (Fᴴ₀ Y)
Fᴴ₁ = Fᴴ .Functor.F₁
FᴴΔ₋ : I → Algebra SOrd H
FᴴΔ₋ i = Fᴴ₀ (Δ₋ i)
pattern ι n i α = (n , i , α)
ι-inj : ∀ {n : Nat} {i : I} {x y : ⌞ Δ₋ i ⌟} → _≡_ {A = ⌞ Δ ⌟} (ι n i x) (ι n i y) → x ≡ y
ι-inj p = is-set→cast-pathp ⌞Δ₋⌟ I-is-set λ j → p j .snd .snd
ι-hom : ∀ (n : Nat) (i : I) → Hom (Δ₋ i) Δ
ι-hom n i .hom = ι n i
ι-hom n i .pres-≤[]-equal α≤β = (reflᵢ , (reflᵢ , α≤β)) , ι-inj
ι-monic : ∀ {n : Nat} {i : I} → SOrd.is-monic (ι-hom n i)
ι-monic g h eq = ext λ α → ι-inj (eq #ₚ α)
--------------------------------------------------------------------------------
-- Construction of the functor T
-- Section 3.4, Lemma 3.9
σ̅ : {i j : I} → SOrdᴴ.Hom (FᴴΔ₋ i) (FᴴΔ₋ j) → Hom Δ H⟨Δ⟩
σ̅ {i} {j} σ .hom (ι n k α) with k ≡ᵢ? i | n | k ≡ᵢ? j
... | yes k=ᵢi | 0 | _ = H.M₁ (ι-hom 0 j) # (σ # (H.η (Δ₋ i) # substᵢ ⌞Δ₋⌟ k=ᵢi α)) -- case k0j
... | yes _ | suc n | yes _ = H.η Δ # ι (suc n) k α -- case k1k
... | yes _ | suc n | no _ = H.η Δ # ι n k α -- case k1j
... | no _ | n | yes _ = H.η Δ # ι (suc n) k α -- case ik
... | no _ | n | no _ = H.η Δ # ι n k α -- case ij
σ̅ {i} {j} σ .pres-≤[]-equal {ι n k α} {ι n k β} (reflᵢ , reflᵢ , α≤β) with k ≡ᵢ? i | n | k ≡ᵢ? j
... | yes reflᵢ | 0 | _ = H⟨Δ⟩.≤[]-map (ap (ι 0 i)) $ (H.M₁ (ι-hom 0 j) ∘ σ .morphism ∘ H.η (Δ₋ i)) .pres-≤[]-equal α≤β
... | yes reflᵢ | suc n | yes _ = H.η Δ .pres-≤[]-equal (reflᵢ , reflᵢ , α≤β)
... | yes reflᵢ | suc n | no _ = H⟨Δ⟩.≤[]-map (ap (ι (suc n) k)) $ (H.η Δ ∘ ι-hom n k) .pres-≤[]-equal α≤β
... | no _ | n | yes _ = H⟨Δ⟩.≤[]-map (ap (ι n k)) $ (H.η Δ ∘ ι-hom (suc n) k) .pres-≤[]-equal α≤β
... | no _ | n | no _ = H.η Δ .pres-≤[]-equal (reflᵢ , reflᵢ , α≤β)
-- Raw β rules of σ̅ σ matching its five cases
module _ where
abstract
σ̅-ι-k0j-ext : ∀ {i j k : I} (σ : SOrdᴴ.Hom (FᴴΔ₋ i) (FᴴΔ₋ j))
→ (p : k ≡ᵢ i)
→ (α : ⌞ Δ₋ k ⌟)
→ σ̅ σ # ι 0 k α ≡ H.M₁ (ι-hom 0 j) # (σ # (H.η (Δ₋ i) # substᵢ ⌞Δ₋⌟ p α))
σ̅-ι-k0j-ext {i = i} {j} {k} σ p α with k ≡ᵢ? i
... | no k≠ᵢi = absurd (k≠ᵢi p)
... | yes reflᵢ =
H.M₁ (ι-hom 0 j) # (σ # (H.η (Δ₋ i) # α))
≡⟨ ap# (H.M₁ (ι-hom 0 j) ∘ σ .morphism ∘ H.η (Δ₋ i)) $ substᵢ-filler-set ⌞Δ₋⌟ I-is-set p α ⟩
H.M₁ (ι-hom 0 j) # (σ # (H.η (Δ₋ i) # substᵢ ⌞Δ₋⌟ p α))
∎
σ̅-ι-k1k-ext : ∀ (n : Nat) {i j k : I} (σ : SOrdᴴ.Hom (Fᴴ₀ (Δ₋ i)) (Fᴴ₀ (Δ₋ j)))
→ k ≡ᵢ i
→ k ≡ᵢ j
→ (α : ⌞ Δ₋ k ⌟)
→ σ̅ σ # ι (suc n) k α ≡ H.η Δ # ι (suc n) k α
σ̅-ι-k1k-ext n {i = i} {j} {k} σ k=ᵢi k=ᵢj α with k ≡ᵢ? i | k ≡ᵢ? j
... | no k≠ᵢi | _ = absurd (k≠ᵢi k=ᵢi)
... | yes _ | no k≠ᵢj = absurd (k≠ᵢj k=ᵢj)
... | yes _ | yes _ = refl
σ̅-ι-k1j-ext : ∀ (n : Nat) {i j k : I} (σ : SOrdᴴ.Hom (Fᴴ₀ (Δ₋ i)) (Fᴴ₀ (Δ₋ j)))
→ k ≡ᵢ i
→ ¬ (k ≡ᵢ j)
→ (α : ⌞ Δ₋ k ⌟)
→ σ̅ σ # ι (suc n) k α ≡ H.η Δ # ι n k α
σ̅-ι-k1j-ext n {i = i} {j} {k} σ k=ᵢi k≠ᵢj α with k ≡ᵢ? i | k ≡ᵢ? j
... | no k≠ᵢi | _ = absurd (k≠ᵢi k=ᵢi)
... | yes _ | yes k=ᵢj = absurd (k≠ᵢj k=ᵢj)
... | yes _ | no _ = refl
σ̅-ι-ik-ext : ∀ (n : Nat) {i j k : I} (σ : SOrdᴴ.Hom (Fᴴ₀ (Δ₋ i)) (Fᴴ₀ (Δ₋ j)))
→ ¬ (k ≡ᵢ i)
→ k ≡ᵢ j
→ (α : ⌞ Δ₋ k ⌟)
→ σ̅ σ # ι n k α ≡ H.η Δ # ι (suc n) k α
σ̅-ι-ik-ext n {i = i} {j} {k} σ k≠ᵢi k=ᵢj α with k ≡ᵢ? i | k ≡ᵢ? j
... | yes k=ᵢi | _ = absurd (k≠ᵢi k=ᵢi)
... | no _ | no k≠ᵢj = absurd (k≠ᵢj k=ᵢj)
... | no _ | yes _ = refl
σ̅-ι-ij-ext : ∀ (n : Nat) {i j k : I} (σ : SOrdᴴ.Hom (Fᴴ₀ (Δ₋ i)) (Fᴴ₀ (Δ₋ j)))
→ ¬ (k ≡ᵢ i)
→ ¬ (k ≡ᵢ j)
→ (α : ⌞ Δ₋ k ⌟)
→ σ̅ σ # ι n k α ≡ H.η Δ # ι n k α
σ̅-ι-ij-ext n {i = i} {j} {k} σ k≠ᵢi k≠ᵢj α with k ≡ᵢ? i | k ≡ᵢ? j
... | yes k=ᵢi | _ = absurd (k≠ᵢi k=ᵢi)
... | no _ | yes k=ᵢj = absurd (k≠ᵢj k=ᵢj)
... | no _ | no _ = refl
-- Wrapped β rules of H.M₁ (σ̅ σ)
module _ where
abstract
H-σ̅-ι-k0j : ∀ {k j : I} (σ : SOrdᴴ.Hom (FᴴΔ₋ k) (FᴴΔ₋ j)) (α : ⌞ H.M₀ (Δ₋ k) ⌟)
→ H.μ Δ # (H.M₁ (σ̅ σ) # (H.M₁ (ι-hom 0 k) # α))
≡ H.M₁ (ι-hom 0 j) # (σ # α)
H-σ̅-ι-k0j {k = k} {j} σ α =
H.μ Δ # (H.M₁ (σ̅ σ) # (H.M₁ (ι-hom 0 k) # α))
≡˘⟨ ap# (H.μ Δ) $ H.M-∘ (σ̅ σ) (ι-hom 0 k) #ₚ α ⟩
H.μ Δ # (H.M₁ (σ̅ σ ∘ ι-hom 0 k) # α)
≡⟨ ap (λ m → H.μ Δ # (H.M₁ m # α)) $ ext $ σ̅-ι-k0j-ext σ reflᵢ ⟩
H.μ Δ # (H.M₁ (H.M₁ (ι-hom 0 j) ∘ σ .morphism ∘ H.η (Δ₋ k)) # α)
≡⟨ μ-M-∘-M H (ι-hom 0 j) (σ .morphism ∘ H.η (Δ₋ k)) #ₚ α ⟩
H.M₁ (ι-hom 0 j) # (H.μ (Δ₋ j) # (H.M₁ (σ .morphism ∘ H.η (Δ₋ k)) # α))
≡⟨ ap# (H.M₁ (ι-hom 0 j)) $ μ-M-∘-Algebraic H σ (H.η (Δ₋ k)) #ₚ α ⟩
H.M₁ (ι-hom 0 j) # (σ # (H.μ (Δ₋ k) # (H.M₁ (H.η (Δ₋ k)) # α)))
≡⟨ ap# (H.M₁ (ι-hom 0 j) ∘ σ .morphism) $ H.left-ident #ₚ _ ⟩
H.M₁ (ι-hom 0 j) # (σ # α)
∎
H-σ̅-η-ι-k1k : ∀ (n : Nat) {i : I} (σ : SOrdᴴ.Hom (Fᴴ₀ (Δ₋ i)) (Fᴴ₀ (Δ₋ i)))
→ (α : ⌞ Δ₋ i ⌟)
→ H.μ Δ # (H.M₁ (σ̅ σ) # (H.η Δ # ι (suc n) i α))
≡ H.η Δ # ι (suc n) i α
H-σ̅-η-ι-k1k n {i = i} σ α =
H.μ Δ # (H.M₁ (σ̅ σ) # (H.η Δ # ι (suc n) i α))
≡⟨ μ-η H (σ̅ σ) #ₚ _ ⟩
σ̅ σ # ι (suc n) i α
≡⟨ σ̅-ι-k1k-ext n σ reflᵢ reflᵢ α ⟩
H.η Δ # ι (suc n) i α
∎
H-σ̅-η-ι-k1j : ∀ (n : Nat) {k j : I} (σ : SOrdᴴ.Hom (Fᴴ₀ (Δ₋ k)) (Fᴴ₀ (Δ₋ j)))
→ ¬ (k ≡ᵢ j)
→ (α : ⌞ Δ₋ k ⌟)
→ H.μ Δ # (H.M₁ (σ̅ σ) # (H.η Δ # ι (suc n) k α))
≡ H.η Δ # ι n k α
H-σ̅-η-ι-k1j n {k = k} σ k≠j α =
H.μ Δ # (H.M₁ (σ̅ σ) # (H.η Δ # ι (suc n) k α))
≡⟨ μ-η H (σ̅ σ) #ₚ _ ⟩
σ̅ σ # ι (suc n) k α
≡⟨ σ̅-ι-k1j-ext n σ reflᵢ k≠j α ⟩
H.η Δ # ι n k α
∎
H-σ̅-η-ι-ik : ∀ (n : Nat) {i k : I} (σ : SOrdᴴ.Hom (Fᴴ₀ (Δ₋ i)) (Fᴴ₀ (Δ₋ k)))
→ ¬ (k ≡ᵢ i)
→ (α : ⌞ Δ₋ k ⌟)
→ H.μ Δ # (H.M₁ (σ̅ σ) # (H.η Δ # ι n k α))
≡ H.η Δ # ι (suc n) k α
H-σ̅-η-ι-ik n {i = i} {k} σ k≠i α =
H.μ Δ # (H.M₁ (σ̅ σ) # (H.η Δ # ι n k α))
≡⟨ μ-η H (σ̅ σ) #ₚ _ ⟩
σ̅ σ # ι n k α
≡⟨ σ̅-ι-ik-ext n σ k≠i reflᵢ α ⟩
H.η Δ # ι (suc n) k α
∎
H-σ̅-η-ι-ij : ∀ (n : Nat) {i j k : I} (σ : SOrdᴴ.Hom (Fᴴ₀ (Δ₋ i)) (Fᴴ₀ (Δ₋ j)))
→ ¬ (k ≡ᵢ i)
→ ¬ (k ≡ᵢ j)
→ (α : ⌞ Δ₋ k ⌟)
→ H.μ Δ # (H.M₁ (σ̅ σ) # (H.η Δ # ι n k α))
≡ H.η Δ # ι n k α
H-σ̅-η-ι-ij n {i = i} {j} {k} σ k≠i k≠j α =
H.μ Δ # (H.M₁ (σ̅ σ) # (H.η Δ # ι n k α))
≡⟨ μ-η H (σ̅ σ) #ₚ _ ⟩
σ̅ σ # ι n k α
≡⟨ σ̅-ι-ij-ext n σ k≠i k≠j α ⟩
H.η Δ # ι n k α
∎
abstract
σ̅-id : ∀ {i : I} (n : Nat) (k : I) (α : ⌞ Δ₋ k ⌟) →
σ̅ {i = i} SOrdᴴ.id # ι n k α ≡ H.η Δ # ι n k α
σ̅-id {i = i} n k α with k ≡ᵢ? i | n
... | yes reflᵢ | 0 = sym (H.unit.is-natural (Δ₋ i) Δ (ι-hom 0 i)) #ₚ α
... | yes reflᵢ | suc n = refl
... | no _ | n = refl
abstract
σ̅-∘ : ∀ {i j k : I}
(σ : SOrdᴴ.Hom (FᴴΔ₋ j) (FᴴΔ₋ k))
(δ : SOrdᴴ.Hom (FᴴΔ₋ i) (FᴴΔ₋ j))
(n : Nat) (l : I) (α : ⌞Δ₋⌟ l)
→ σ̅ (σ SOrdᴴ.∘ δ) # ι n l α
≡ (H.μ Δ ∘ H.M₁ (σ̅ σ) ∘ σ̅ δ) # ι n l α
σ̅-∘ {i = i} {j} {k} σ δ n l α with l ≡ᵢ? i | n | l ≡ᵢ? j | l ≡ᵢ? k
... | yes reflᵢ | 0 | _ | _ = sym $ H-σ̅-ι-k0j σ (δ # (H.η (Δ₋ i) # α))
-- Note: the following eight cases correspond to the table in the paper with eight rows.
... | yes reflᵢ | suc n | yes reflᵢ | yes reflᵢ = sym $ H-σ̅-η-ι-k1k n σ α
... | yes reflᵢ | suc n | yes reflᵢ | no l≠k = sym $ H-σ̅-η-ι-k1j n σ l≠k α
... | yes reflᵢ | suc n | no l≠j | yes reflᵢ = sym $ H-σ̅-η-ι-ik n σ l≠j α
... | yes reflᵢ | suc n | no l≠j | no l≠k = sym $ H-σ̅-η-ι-ij n σ l≠j l≠k α
... | no l≠i | n | yes reflᵢ | yes reflᵢ = sym $ H-σ̅-η-ι-k1k n σ α
... | no l≠i | n | yes reflᵢ | no l≠k = sym $ H-σ̅-η-ι-k1j n σ l≠k α
... | no l≠i | n | no l≠j | yes reflᵢ = sym $ H-σ̅-η-ι-ik n σ l≠j α
... | no l≠i | n | no l≠j | no l≠k = sym $ H-σ̅-η-ι-ij n σ l≠j l≠k α
T : Functor (Indexed SOrdᴴ FᴴΔ₋) (Endos SOrdᴴ (Fᴴ₀ Δ))
T .Functor.F₀ i = tt
T .Functor.F₁ σ .morphism = H.μ Δ ∘ H.M₁ (σ̅ σ)
T .Functor.F₁ σ .commutes = ext λ α →
H.μ Δ # (H.M₁ (σ̅ σ) # (H.μ Δ # α)) ≡˘⟨ ap# (H.μ _) $ H.mult.is-natural _ _ (σ̅ σ) #ₚ α ⟩
H.μ Δ # (H.μ (H.M₀ Δ) # (H.M₁ (H.M₁ (σ̅ σ)) # α)) ≡˘⟨ μ-M-∘-μ H (H.M₁ (σ̅ σ)) #ₚ α ⟩
H.μ Δ # (H.M₁ (H.μ Δ ∘ H.M₁ (σ̅ σ)) # α) ∎
T .Functor.F-id = ext λ α →
H.μ _ # (H.M₁ (σ̅ SOrdᴴ.id) # α) ≡⟨ ap (λ m → H.μ _ # (H.M₁ m # α)) $ ext σ̅-id ⟩
H.μ _ # (H.M₁ (H.η _) # α) ≡⟨ H.left-ident #ₚ _ ⟩
α ∎
T .Functor.F-∘ σ δ = ext λ α →
H.μ Δ # (H.M₁ (σ̅ (σ SOrdᴴ.∘ δ)) # α) ≡⟨ ap# (H.μ Δ) $ ap (H.M₁) (ext $ σ̅-∘ σ δ) #ₚ α ⟩
H.μ Δ # (H.M₁ (H.μ Δ ∘ H.M₁ (σ̅ σ) ∘ σ̅ δ) # α) ≡⟨ μ-M-∘-μ H (H.M₁ (σ̅ σ) ∘ σ̅ δ) #ₚ α ⟩
H.μ Δ # (H.μ (H.M₀ Δ) # (H.M₁ (H.M₁ (σ̅ σ) ∘ σ̅ δ) # α)) ≡⟨ ap# (H.μ Δ) $ μ-M-∘-M H (σ̅ σ) (σ̅ δ) #ₚ α ⟩
H.μ Δ # (H.M₁ (σ̅ σ) # (H.μ Δ # (H.M₁ (σ̅ δ) # α))) ∎
--------------------------------------------------------------------------------
-- Constructing the natural transformation ν
-- Section 3.4, Lemma 3.8
ν : Indexed-include => Endos-include F∘ T
ν ._=>_.η i = Fᴴ₁ (ι-hom 0 i)
ν ._=>_.is-natural i j σ = sym $ ext $ H-σ̅-ι-k0j σ
--------------------------------------------------------------------------------
-- Faithfulness of T
-- Section 3.4, Lemma 3.9
abstract
T-faithful : preserves-monos H → is-faithful T
T-faithful H-preserves-monos {i} {j} {σ} {δ} eq =
Algebra-hom-path _ $ H-preserves-monos (ι-hom 0 j) ι-monic _ _ $ ext λ α →
H.M₁ (ι-hom 0 j) # (σ # α) ≡˘⟨ H-σ̅-ι-k0j σ α ⟩
H.μ Δ # (H.M₁ (σ̅ σ) # (H.M₁ (ι-hom 0 i) # α)) ≡⟨ eq #ₚ (H.M₁ (ι-hom 0 i) # α) ⟩
H.μ Δ # (H.M₁ (σ̅ δ) # (H.M₁ (ι-hom 0 i) # α)) ≡⟨ H-σ̅-ι-k0j δ α ⟩
H.M₁ (ι-hom 0 j) # (δ # α) ∎