-
Notifications
You must be signed in to change notification settings - Fork 53
/
train_storymaker.py
872 lines (793 loc) · 38 KB
/
train_storymaker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
import os
import random
import argparse
from pathlib import Path
import json
import itertools
import time
import logging
import numpy as np
import torch, pdb, math
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
from transformers import CLIPImageProcessor
from transformers.models.clip.modeling_clip import CLIPPreTrainedModel, CLIPModel
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, DistributedDataParallelKwargs
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, ControlNetModel
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, AutoTokenizer, PretrainedConfig
from ip_adapter.resampler import Resampler
from ip_adapter.ip_adapter import ImageProjModel
from ip_adapter.utils import is_torch2_available
from ip_adapter.ip_adapter_faceid import faceid_plus
if is_torch2_available():
from ip_adapter.attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor
from ip_adapter.attention_processor_faceid import (
LoRAAttnProcessor2_0 as LoRAAttnProcessor,
)
from ip_adapter.attention_processor_faceid import (
LoRAIPAttnProcessor2_0 as LoRAIPAttnProcessor,
)
import warnings, traceback
warnings.filterwarnings("ignore", message="Some weights of the model checkpoint*")
Image.MAX_IMAGE_PIXELS = None
logger = get_logger(__name__)
import random, cv2
import string
from tqdm import tqdm
def collate_fn(data):
images_gt = torch.stack([example["image_gt"] for example in data])
images_ref = torch.stack([example["image_ref"] for example in data])
text_input_ids = torch.cat([example["text_input_ids"] for example in data], dim=0)
text_input_ids2 = torch.cat([example["text_input_ids2"] for example in data], dim=0)
clip_images = torch.cat([example["clip_image"] for example in data], dim=0)
clip_faces = torch.cat([example["clip_face"] for example in data], dim=0)
face_id_embeds = torch.cat([example["face_id_embed"] for example in data], dim=0)
face_kps_abs = torch.cat([example["face_kps_abs"] for example in data], dim=0)
face_unnorm_embeds = torch.cat([example["face_unnorm_embed"] for example in data], dim=0)
drop_image_embeds = [example["drop_image_embed"] for example in data]
topleft = torch.stack([example["topleft"] for example in data])
masks_gt = torch.stack([example["mask_gt"] for example in data])
style_idx = torch.stack([example["style"] for example in data])
return {
"images_gt": images_gt,
"images_ref": images_ref,
"text_input_ids": text_input_ids,
"text_input_ids2": text_input_ids2,
"clip_images": clip_images,
"drop_image_embeds": drop_image_embeds,
"topleft":topleft,
"face_id_embeds": face_id_embeds, "face_kps_abs": face_kps_abs,
"face_unnorm_embeds": face_unnorm_embeds,
"clip_faces": clip_faces,
"masks_gt": masks_gt, "style_idx": style_idx,
}
from mp_dataset import MasktileDataset
class IPAdapter(torch.nn.Module):
"""IP-Adapter"""
def __init__(self, unet, image_proj_model, adapter_modules):
super().__init__()
self.unet = unet
self.image_proj_model = image_proj_model
self.adapter_modules = adapter_modules
def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds, faceid_embeds, use_faceid, \
face_embeds, use_facekps, controlnet_image, controlnet, ctrl_clipemb, added_cond_kwargs):
ip_tokens = self.image_proj_model(faceid_embeds, image_embeds, face_embeds=face_embeds, is_training=1)
B, C, D = ip_tokens.shape
ip_tokens = ip_tokens.view(1, B*C, D) # 多人ip-embeds need reshape, batchsize must be 1
if controlnet:
down_block_res_samples, mid_block_res_sample = controlnet(
noisy_latents,
timesteps,
encoder_hidden_states=ip_tokens,
added_cond_kwargs=added_cond_kwargs,
controlnet_cond=controlnet_image,
return_dict=False,
)
else:
down_block_res_samples, mid_block_res_sample = None, None
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
weight_dtype = torch.float16
noise_pred = self.unet(
noisy_latents,
timesteps,
encoder_hidden_states=encoder_hidden_states,
added_cond_kwargs=added_cond_kwargs,
down_block_additional_residuals=None if down_block_res_samples is None else [ sample.to(dtype=weight_dtype) for sample in down_block_res_samples ],
mid_block_additional_residual=None if down_block_res_samples is None else mid_block_res_sample.to(dtype=weight_dtype),
).sample
return noise_pred
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--data_json_file",
type=str,
default=None,
required=True,
help="Training data",
)
parser.add_argument(
"--data_root_path",
type=str,
default="",
required=True,
help="Training data root path",
)
parser.add_argument(
"--image_encoder_path",
type=str,
default=None,
required=True,
help="Path to CLIP image encoder",
)
parser.add_argument(
"--controlnet_model_name_or_path",
type=str,
default=None,
help="Path to pretrained controlnet model or model identifier from huggingface.co/models."
" If not specified controlnet weights are initialized from unet.",
)
parser.add_argument(
"--pretrained_ip_adapter",
type=str,
default=None,
help="Path to pretrained controlnet model or model identifier from huggingface.co/models."
" If not specified controlnet weights are initialized from unet.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--output_dir",
type=str,
default="sd-ip_adapter",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--use_whichemb",
type=int,
default=1,
)
parser.add_argument(
"--rotate",
type=int,
default=0,
)
parser.add_argument(
"--resolution",
type=int,
default=960,
help=(
"The resolution for input images"
),
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Learning rate to use.",
)
parser.add_argument(
"--lr_lora",
type=float,
default=None,
help="Learning rate to use.",
)
parser.add_argument(
"--old_vfeature",
action="store_true",
default=False,
help="whether to",
)
parser.add_argument("--weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument("--max_train_steps", type=int, default=100000)
parser.add_argument("--noise_offset", type=float, default=0.05, help="The scale of noise offset.")
parser.add_argument(
"--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_tokens", type=int, default=16)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=8,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=8,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument(
"--save_steps",
type=int,
default=2000,
help=(
"Save a checkpoint of the training state every X updates"
),
)
parser.add_argument("--bg_tokens", type=int, default=20)
parser.add_argument(
"--ctrl_clipemb",
type=int,
default=0,
)
parser.add_argument(
"--cropref",
type=int,
default=1,
)
parser.add_argument(
"--hstack_ref",
type=int,
default=0,
)
parser.add_argument( "--bg_ref", type=int, default=0, )
parser.add_argument( "--drop_pose", type=int, default=0, )
parser.add_argument( "--style_emb", type=int, default=0, )
parser.add_argument(
"--use_vseg",
type=int,
default=1,
)
parser.add_argument(
"--use_faceid",
type=int,
default=4,
)
parser.add_argument(
"--use_facekps",
type=int,
default=1,
)
parser.add_argument(
"--use_headseg",
type=int,
default=0,
)
parser.add_argument( "--faceid_loss", type=float, default=0.1, )
parser.add_argument( "--mse_loss", type=float, default=0, )
parser.add_argument( "--use_unnorm", type=int, default=0, )
parser.add_argument( "--add_anime", type=float, default=0, )
parser.add_argument( "--sort_person", type=float, default=0, )
parser.add_argument(
"--ip_attn_len",
type=int,
default=60,
)
parser.add_argument(
"--invproj",
type=int,
default=0,
)
parser.add_argument(
"--scale",
type=float,
default=1.0,
)
parser.add_argument(
"--split_ip",
type=int,
default=0,
)
parser.add_argument(
"--pretrained_ip_plus", type=str, default='',
)
parser.add_argument(
"--drop_prompt", type=float, default=0.2,
)
parser.add_argument(
"--ip_loss", type=float, default=0.1,
)
parser.add_argument(
"--ip_loss_only_person", type=int, default=0,
)
parser.add_argument(
"--mask_loss_weight", type=float, default=5,
)
parser.add_argument(
"--mmdiff_clip_path", type=str, default=None,
)
parser.add_argument(
"--instantid_path", type=str, default=None,
)
parser.add_argument(
"--lora_rank",
type=int,
default=128,
)
parser.add_argument(
"--snr_gamma",
type=float,
default=None,
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
"More details here: https://arxiv.org/abs/2303.09556.",
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--tracker_project_name",
type=str,
default="sd_xl_train_controlnet",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
def compute_snr(noise_scheduler, timesteps):
"""
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma) ** 2
return snr
import random
import string
def generate_random_string(length):
# 生成随机的数字和字母
letters = string.ascii_letters + string.digits
# 生成指定长度的随机字符串
return ''.join(random.choice(letters) for i in range(length))
def main():
args = parse_args()
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
kwargs_handlers=[kwargs],
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False
)
tokenizer2 = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.revision, use_fast=False
)
text_encoder_cls_one = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
)
text_encoder = text_encoder_cls_one.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
)
text_encoder_two = text_encoder_cls_two.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision
)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path)
controlnet = None
if args.controlnet_model_name_or_path:
logger.info("Loading existing controlnet weights")
controlnet = ControlNetModel.from_pretrained(args.controlnet_model_name_or_path)
controlnet.requires_grad_(False)
# freeze parameters of models to save more memory
unet.requires_grad_(False)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_two.requires_grad_(False)
image_encoder.requires_grad_(False)
image_proj_model = faceid_plus(
cross_attention_dim=unet.config.cross_attention_dim,
id_embeddings_dim=512,
clip_embeddings_dim=image_encoder.config.hidden_size,
)
# init adapter modules
attn_procs = {}; lora_rank = args.lora_rank
unet_sd = unet.state_dict(); #print(unet.attn_processors.keys())
ip_attn_names = []
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=lora_rank, lora_scale=args.scale)
else:
layer_name = name.split(".processor")[0]
attn_procs[name] = LoRAIPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, \
rank=lora_rank, num_tokens=20, ip_loss=args.ip_loss, lora_scale=args.scale,scale=args.scale)
ip_attn_names.append(name)
ip_attn_names_len = len(ip_attn_names)
unet.set_attn_processor(attn_procs)
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
if args.pretrained_ip_adapter:
state_dict = torch.load(args.pretrained_ip_adapter, map_location="cpu")
if 'image_proj' in state_dict:
aa = state_dict["image_proj"]
elif 'image_proj_model' in state_dict:
aa = state_dict["image_proj_model"]
try:
image_proj_model.load_state_dict(aa)
logger.info(f"Loading pretrain proj weights successful, modelpath={args.pretrained_ip_adapter}")
except:
dict_b = torch.load(args.pretrained_ip_plus)
image_proj_model.load_model(aa, dict_b['image_proj'])
logger.info("Loading resample weights")
if 'ip_adapter' in state_dict:
state_dict = state_dict['ip_adapter']; print('use faceid-adapter attention weights:', len(state_dict))
adapter_modules.load_state_dict(state_dict, strict=False)
logger.info("Loading existing ip adapter weights")
ip_adapter = IPAdapter(unet, image_proj_model, adapter_modules)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
vae.to(accelerator.device, dtype=torch.float32)
text_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder_two.to(accelerator.device, dtype=weight_dtype)
image_encoder.to(accelerator.device, dtype=weight_dtype)
if args.controlnet_model_name_or_path:
controlnet.to(accelerator.device, dtype=weight_dtype)
# optimizer
lr_lora = args.learning_rate if args.lr_lora is None else args.lr_lora
params_to_opt = itertools.chain([ { "params": itertools.chain(ip_adapter.image_proj_model.parameters()), "lr": args.learning_rate },
{ "params": itertools.chain(ip_adapter.adapter_modules.parameters()), "lr": lr_lora, }, ])
optimizer = torch.optim.AdamW(params_to_opt, lr=args.learning_rate, weight_decay=args.weight_decay)
# dataloader
train_dataset = MasktileDataset(args, tokenizer=tokenizer, tokenizer2=tokenizer2, t_drop_rate=args.drop_prompt, i_drop_rate=0.05, ti_drop_rate=0.05,)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=args.train_batch_size,
num_workers=args.dataloader_num_workers,
)
ip_adapter, optimizer, train_dataloader = accelerator.prepare(ip_adapter, optimizer, train_dataloader)
text_encoders = [text_encoder, text_encoder_two]
num_update_steps_per_epoch = math.ceil(len(train_dataloader)/ args.gradient_accumulation_steps)
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
if accelerator.is_main_process:
tracker_config = dict(vars(args))
accelerator.init_trackers(args.tracker_project_name, config=tracker_config)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0; st=time.time()
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=global_step,
desc="Steps",
disable=not accelerator.is_local_main_process,
)
num_token = 20
bg_tokens=num_token
def tensor_2_numpy(tensor, h=None,w=None):
if h is not None:
tensor = F.interpolate(tensor, size=(h, w), mode='bilinear',)
data = (tensor*0.5+0.5).clamp(0,1)
else:
data = tensor
data = data.squeeze(0).permute(1,2,0).float().detach().cpu()*255
if data.shape[2]==1:
data = np.tile(data, (1,1,3))
img = np.array(data, np.uint8)
return img
def get_loss_ip(mask_gt, step, img_gt):
B, lsh,lsw, img_num = mask_gt.shape
if args.mask_loss_weight>0:
dr = 2
tmp = mask_gt.permute(0,3,1,2)
tmp = F.interpolate(tmp, size=(lsh//dr, lsw//dr), mode='bilinear',)
mask_gt = tmp.permute(0,2,3,1)
B, lsh,lsw, img_num = mask_gt.shape
th, tw = math.ceil(lsh/2), math.ceil(lsw/2)
ls = lsh*lsw; # ip_attn_len = 0
attn_list = [0]*img_num
mask_person = mask_gt.sum(dim=-1).clamp(0,1);
mask_area = mask_person.sum(); start_idx = 0
mask_bg = 1-mask_person; # bg_area = max(1e-3, lsh*lsw-mask_area)
start_idx=0; attn_bg = 0
mask_area= lsh*lsw
for name in ip_attn_names:
attn_probs = unet.attn_processors[name].attn_probs # batch, latentsize, ipembed-len
B, tlen, attn_ls = attn_probs.shape
if attn_ls != ls:
attn_probs = attn_probs.view(B, tlen, th, tw)
attn_probs = F.interpolate(attn_probs, size=(lsh, lsw), mode='bilinear',)
else:
continue # apply the localization loss to the downsampled cross-attention maps, i.e., the middle 5 blocks of the U-Net, which are known to contain more semantic information
bg_prob = attn_probs[:,:bg_tokens, :,:].float().sum(dim=1)
attn_bg+=bg_prob
for i in range(start_idx, img_num):
cur_prob = attn_probs[:,num_token*i+bg_tokens:num_token*(i+1)+bg_tokens, :,:].float().sum(dim=1)
attn_list[i-start_idx] += cur_prob
loss_ip = 0; res = []
for i, attn in enumerate(attn_list):
attn_mask = attn/60
cur_loss = F.mse_loss(attn_mask.float(), mask_gt[:,:,:,i].float(), reduction="none")
loss_ip += cur_loss.sum()/max(mask_area, 1e-5)
if i==0: # 顺便计算bg loss
attn_bg = attn_bg/60
cur_loss = F.mse_loss(attn_bg.float(), mask_bg.float(), reduction="mean")
loss_ip += cur_loss
if step%1000==0:
print(step, i, attn_mask.min().item(), attn_mask.max().item(), [B, lsh,lsw, img_num], args.ip_attn_len, loss_ip)
if True:
if i==0:
img = tensor_2_numpy(img_gt, lsh, lsw)
img = img[:,:,::-1]
mask_img = tensor_2_numpy(mask_person.unsqueeze(1))
res.append(np.vstack([img, mask_img]))
mask = tensor_2_numpy(mask_bg.unsqueeze(1))
attn = tensor_2_numpy(attn_bg.unsqueeze(1))
res.append(np.vstack([mask, attn]))
# pdb.set_trace()
mask = tensor_2_numpy(mask_gt[:,:,:,i].unsqueeze(1))
attn = tensor_2_numpy(attn_mask.unsqueeze(1))
res.append(np.vstack([mask, attn]))
if len(res)>1:
sname = generate_random_string(4); os.makedirs(os.path.join(args.output_dir, 'attn_mask'), exist_ok=True)
cv2.imwrite(os.path.join(args.output_dir, 'attn_mask', f'{step:05d}_{sname}_{attn_mask.min().item():.4f}.jpg'), np.hstack(res))
return torch.nan_to_num(loss_ip/img_num, nan=1e-5) #
if args.faceid_loss>0:
from arcface import face_align_torch
from arcface import get_model
facenet = get_model('r34', fp16=False)
arcface_path = './arcface/resnet34.pth'
print(arcface_path)
facenet.load_state_dict(torch.load(arcface_path))
facenet.to(accelerator.device, dtype=torch.float32)
facenet.requires_grad_(False)
facenet.eval()
def get_each_face_and_faceid_loss(gt_face_in, noise_face_in):
gt_face = gt_face_in.div(255).sub(0.5).div(0.5)
noise_face = noise_face_in.div(255).sub(0.5).div(0.5)
face_emb=facenet(torch.cat([gt_face, noise_face], dim=0))
cosine = F.cosine_similarity(face_emb[0:1].detach(), face_emb[1:2])
loss = 1-cosine.mean()
return loss
def get_loss_faceid(step, img_gt, noisy_latents, noise_pred, timesteps, face_kps_abs, mask_gt): # https://arxiv.org/pdf/2312.06354
loss_id = 0; loss_mse = 0
if timesteps[0]>250:
return 0,0
x0=noise_scheduler.step(noise_pred, timesteps, noisy_latents).pred_original_sample
noise_img = vae.decode(x0/vae.config.scaling_factor).sample
# nimg = image_processor.postprocess(noise_img.detach().cpu())[0] # not support grad
data = (noise_img*0.5+0.5).clamp(0,1)*255
# data = data*255 # .squeeze(0).permute(1,2,0)
img_num, _,_ = face_kps_abs.shape
img_gt = (img_gt*0.5+0.5).clamp(0,1)*255 # RGB
for i in range(img_num):
grid = F.affine_grid(face_kps_abs[i:i+1], size=[1, 3, 112, 112])
# pdb.set_trace()
gt_face = F.grid_sample(img_gt, grid=grid, mode="bilinear", padding_mode="zeros", align_corners=False) # [1, C, H, W]
noise_face = F.grid_sample(data, grid=grid, mode="bilinear", padding_mode="zeros", align_corners=False)
# face_image = face_align.norm_crop(data, landmark=face_kps.numpy(), image_size=224) # 224
loss_id+=get_each_face_and_faceid_loss(gt_face, noise_face, )
if step%100==0:
t = timesteps.cpu().numpy()[0]
nimg = np.array(data.detach().cpu().squeeze(0).permute(1,2,0), np.uint8)[:,:,::-1] # to BGR
gimg = np.array(img_gt.detach().cpu().squeeze(0).permute(1,2,0), np.uint8)[:,:,::-1] # to BGR
nface = np.array(noise_face.detach().cpu().squeeze(0).permute(1,2,0), np.uint8)[:,:,::-1] # to BGR
gface = np.array(gt_face.detach().cpu().squeeze(0).permute(1,2,0), np.uint8)[:,:,::-1] # to BGR
sname = generate_random_string(4); os.makedirs(os.path.join(args.output_dir, 'reverse'), exist_ok=True)
cv2.imwrite(os.path.join(args.output_dir, 'reverse', f'{step:05d}_{sname}_{t}_{loss_id.item():.3f}.jpg'), np.hstack([gimg, nimg]))
cv2.imwrite(os.path.join(args.output_dir, 'reverse', f'{step:05d}_{sname}_{t}_face.jpg'), np.hstack([gface, nface]))
return loss_id, loss_mse
noise_scheduler.alphas_cumprod=noise_scheduler.alphas_cumprod.to(accelerator.device)
for epoch in range(0, args.num_train_epochs):
begin = time.perf_counter()
for step, batch in enumerate(train_dataloader):
try:
load_data_time = time.perf_counter() - begin
with accelerator.accumulate(ip_adapter):
with torch.no_grad():
latents = vae.encode(batch["images_gt"].to(accelerator.device)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
if args.noise_offset:
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
noise += args.noise_offset * torch.randn(
(latents.shape[0], latents.shape[1], 1, 1), device=latents.device
)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
add_time_ids = batch['topleft']
prompt_embeds_list = []
for id_name, text_encoder in zip(['text_input_ids', 'text_input_ids2'], text_encoders):
prompt_embeds = text_encoder(
batch[id_name].to(text_encoder.device),
output_hidden_states=True,
)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
prompt_embeds_list.append(prompt_embeds)
encoder_hidden_states = torch.concat(prompt_embeds_list, dim=-1)
add_text_embeds = pooled_prompt_embeds.view(bs_embed, -1)
add_text_embeds = add_text_embeds.to(accelerator.device)
add_time_ids = add_time_ids.to(dtype=add_text_embeds.dtype)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
if batch["drop_image_embeds"][0]:
clip_images = torch.zeros_like(batch["clip_images"])
face_id_embeds = torch.zeros_like(batch["face_id_embeds"])
clip_faces = torch.zeros_like(batch["clip_faces"])
else:
clip_images = batch["clip_images"]
face_id_embeds = batch["face_id_embeds"]
clip_faces = batch["clip_faces"]
with torch.no_grad(): # B,257, 1024
image_embeds = image_encoder(clip_images.to(accelerator.device, dtype=weight_dtype), output_hidden_states=True).hidden_states[-2]
face_embeds = image_encoder(clip_faces.to(accelerator.device, dtype=weight_dtype), output_hidden_states=True).hidden_states[-2]
midinfo={"text_embeds": add_text_embeds, "time_ids": add_time_ids}
# ControlNet conditioning.
controlnet_image = batch["images_ref"].to(dtype=weight_dtype)
noise_pred = ip_adapter(noisy_latents, timesteps, encoder_hidden_states, image_embeds, face_id_embeds, args.use_faceid, face_embeds, args.use_facekps, \
controlnet_image, controlnet, args.ctrl_clipemb, \
added_cond_kwargs={"text_embeds": add_text_embeds, "time_ids": add_time_ids, })
if args.snr_gamma is None:
if args.mask_loss_weight>0 and batch["drop_image_embeds"][0]<1:
loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="none")
mask_gt = batch["masks_gt"].to(accelerator.device, dtype=weight_dtype)
mask_gt = mask_gt.sum(dim=-1).unsqueeze(1).clamp(0,1)
loss = loss + loss*mask_gt*args.mask_loss_weight
loss = loss.mean()
else:
loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean")
else:
snr = compute_snr(noise_scheduler, timesteps)
mse_loss_weights = (
torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
)
loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="none")
if args.mask_loss_weight>0:
mask_gt = batch["masks_gt"].to(accelerator.device, dtype=torch.float32)
mask_gt = mask_gt.sum(dim=-1).unsqueeze(1).clamp(0,1)
loss = loss + loss*mask_gt*args.mask_loss_weight
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean()
if args.faceid_loss>0 and batch["drop_image_embeds"][0]<1:
loss_faceid, loss_mse = get_loss_faceid(step, batch["images_gt"], noisy_latents, noise_pred.float(), timesteps, batch["face_kps_abs"].float(), mask_gt)
loss += loss_faceid*args.faceid_loss
mask_gt = batch["masks_gt"].to(accelerator.device, dtype=torch.float32)
loss_ip = get_loss_ip(mask_gt, step, batch["images_gt"])
loss += loss_ip*args.ip_loss
accelerator.backward(loss)
if accelerator.sync_gradients: # error
params_to_clip = params_to_opt
accelerator.clip_grad_norm_(params_to_clip, 1)
optimizer.step()
optimizer.zero_grad(set_to_none=False)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process:
if global_step>1 and global_step % args.save_steps == 0:
print(f'save checkpoint, global step={global_step}, save steps={args.save_steps}')
weight_name = (f"checkpoint-{global_step}" )
save_path = os.path.join(args.output_dir, weight_name)
save_progress(
ip_adapter,
accelerator,
args,
save_path,
)
logs = {"loss": loss.detach().item(),"ip_loss": loss_ip.detach().item(), "lr": args.learning_rate, "data_time":load_data_time, "train_time":time.perf_counter() - begin}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
begin = time.perf_counter()
if global_step >= args.max_train_steps:
break
except Exception as e:
traceback.print_exc()
accelerator.wait_for_everyone()
accelerator.end_training()
def save_progress(trained_embdding_net, accelerator, args, save_path, safe_serialization=True):
attention = trained_embdding_net.module.adapter_modules.state_dict()
image_proj_model = trained_embdding_net.module.image_proj_model.state_dict()
logger.info(f"Saving embeddings to {save_path}")
os.makedirs(save_path, exist_ok=True)
learned_embeds_dict = {'image_proj_model':image_proj_model, 'ip_adapter':attention, }
torch.save(learned_embeds_dict, save_path+'/mask.bin')
if __name__ == "__main__":
main()