forked from liux0614/yolo_nano
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
62 lines (50 loc) · 2.42 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
from terminaltables import AsciiTable
from utils.stats import (
non_max_suppression, xywh2xyxy,
get_batch_statistics, ap_per_class, load_classe_names)
@torch.no_grad()
def test(model, dataloader, epoch, opt, test_logger, visualizer=None):
labels = []
sample_matrics = []
for i, (images, targets) in enumerate(dataloader):
if targets.size(0) == 0:
continue
batches_done = len(dataloader) * epoch + i
if not opt.no_cuda:
images_cpu = images.clone()
model = model.to(opt.device)
images = Variable(images.to(opt.device))
if targets is not None:
targets = Variable(targets.to(opt.device), requires_grad=False)
labels += targets[:, 1].tolist()
targets[:, 2:] = xywh2xyxy(targets[:, 2:])
targets[:, 2:] *= opt.image_size
detections = model.forward(images)
detections = non_max_suppression(detections, opt.conf_thres, opt.nms_thres)
sample_matrics += get_batch_statistics(detections, targets.cpu(), iou_threshold=0.5)
if visualizer is not None and not opt.no_vis_preds:
visualizer.plot_predictions(images.cpu(), detections, env='main') # plot prediction
if visualizer is not None and not opt.no_vis_gt:
visualizer.plot_ground_truth(images.cpu(), targets.cpu(), env='main') # plot ground truth
true_positives, pred_scores, pred_labels = [np.concatenate(x, 0) for x in list(zip(*sample_matrics))]
precision, recall, AP, f1, ap_class = ap_per_class(true_positives, pred_scores, pred_labels, labels)
# logging
metric_table_data = [
['Metrics', 'Value'], ['precision', precision.mean()], ['recall', recall.mean()],
['f1', f1.mean()], ['mAP', AP.mean()]]
metric_table = AsciiTable(
metric_table_data,
title='[Epoch {:d}/{:d}'.format(epoch, opt.num_epochs))
print('{}\n\n\n'.format(metric_table.table))
class_names = load_classe_names(opt.classname_path)
for i, c in enumerate(ap_class):
metric_table_data += [['AP-{}'.format(class_names[c]), AP[i]]]
metric_table.table_data = metric_table_data
test_logger.write('{}\n\n\n'.format(metric_table.table))
if visualizer is not None:
vis.plot_metrics(metric_table_data, batches_done, env='main')