diff --git a/input/kinetics/libraries/primaryNitrogenLibrary/reactions.py b/input/kinetics/libraries/primaryNitrogenLibrary/reactions.py index 9d1e3e65b6..1734c2caa0 100644 --- a/input/kinetics/libraries/primaryNitrogenLibrary/reactions.py +++ b/input/kinetics/libraries/primaryNitrogenLibrary/reactions.py @@ -133,6 +133,11 @@ [Wang1982] O.I. Smith, S. Tseregounis, S-N. Wang, Int. J. Chem. Kin., 1982, 14(6), 679-697, doi: 10.1002/kin.550140610 [Yamaguchi1999] Y. Yamaguchi, Y. Teng, S. Shimomura, K. Tabata, E. Suzuki, J. Phys. Chem. A, 1999, 103(41), 8272-8278, doi: 10.1021/jp990985a [Yang2012] Y. Guan, B. Yang, J. Comp. Chem., 2012, 33(23), 1870-1879, doi: 10.1002/jcc.23020 +[Glarborg2021] P. Glarborg, Ahren W. Jasper, J. Phys. Chem. A, 2021, 125, 7, 2021, 1505-1516, doi: 10.1021/acs.jpca.0c11011 +[Sarathy2022] Javier E. Chavarrio Cañs, S. Mani Sarathy, Combustion and Flame, 2022, 111708, doi: 10.1016/j.combustflame.2021.111708. +[Salimian1984] S. Salimian, R. K. Hanson, C.H. Kruger, Department of mechanical engineering, June 1984, Stanford University, Stanford, 725 - 739, doi: 10.1002/kin.550160609 +[Glarborg2018] Peter Glarborg, James A. Miller, Branko Ruscic, Stephen J. Klippenstein, Progress in Energy and Combustion Science, 2018, 31 - 68, doi: 10.1016/j.pecs.2018.01.002 +[Stagni2020] A. Stagni, T. fARAVELLI, Royal society of chemistry, 2020, 696-711, doi: 10.1039/c9re00429g """ entry( @@ -1696,19 +1701,27 @@ entry( index = 88, - label = "NH3 <=> NH2 + H", - degeneracy = 1, - kinetics = ThirdBody( - arrheniusLow = Arrhenius(A=(2.20e+16, 'cm^3/(mol*s)'), n=0, Ea=(93468, 'cal/mol'), T0 = (1, 'K'), Tmin=(2200, 'K'), Tmax=(2800, 'K'))), - shortDesc = u"""[Hanson1990a]""", - longDesc = + label='NH2 + H <=> NH3', + kinetics=Troe( + arrheniusHigh=Arrhenius(A=(1.6e+14, 'cm^3/(mol*s)'), n=0.0, Ea=(0, 'cal/mol'), T0=(1, 'K')), + arrheniusLow=Arrhenius(A=(3.6e+22, 'cm^6/(mol^2*s)'), n=-1.76, Ea=(0, 'cal/mol'), T0=(1, 'K')), + alpha=0.5, + T3=(1e-30, 'K'), + T1=(1e+30, 'K'), + efficiencies={'N#N': 1.0, '[Ar]': 0.32, '[O][O]': 0.50, 'N': 4.39}, + ), + shortDesc=u"""[Glarborg2021]""", + longDesc= u""" -Part of the "NHx" subset -R1 in Table 1, p. 521 -T range: 2200-2800 K -Shock Tube -The competing reaction "NH3 <=> NH + H2" is spin-hindered, and is ~40 times lower in rate, and can be neglected. Source: [Hanson1984c] -Train! +Reaction 2, Table 2, Source: [Glarborg2021]. Experimental work re-interpreted using direct measurements from +[Altinay&Macdonald2015]. Original values taken from [Klippenstein2009a], computed with the CCSD(T) method employing +either the aug-cc-pvdz or aug-cc-pvtz basis set, adopted by [Glarborg2021] and calculated the relative third-body +efficiencies of Ar, O2, and NH3 and selected other collision partners compared to N2 for the reaction. The interaction +potentials were trained against large data sets of ab initio (counterpoise corrected MP2 with cc-pVTZ and cc-pVQZ +complete basis set extrapolations) energies. [Altinay&Macdonald2015] indicate that the reaction is sufficiently fast at +a pressure of 560 Torr and should be taken into account. Previously taken from [Hanson1984c] it's part of the "NHx" +subset R1 in Table 1, p. 521 T range: 2200-2800 K Shock Tube. The competing reaction "NH3 <=> NH + H2" is spin-hindered, +and is ~40 times lower in rate, and can be neglected. """, ) @@ -1922,25 +1935,32 @@ entry( index = 101, - label = "N2H4 <=> NH2 + NH2", - degeneracy = 1, - kinetics = Lindemann( - arrheniusHigh = Arrhenius(A=(1.57e+21, 's^-1'), n=-1.04, Ea=(66565, 'cal/mol'), T0=(1, 'K'), Tmin=(300, 'K'), Tmax=(2000, 'K')), - arrheniusLow = Arrhenius(A=(1.96e+52, 'cm^3/(mol*s)'), n=-10.2, Ea=(71677, 'cal/mol'), T0=(1, 'K'), Tmin=(300, 'K'), Tmax=(2000, 'K'))), - elementary_high_p = True, - shortDesc = u"""[Lin2014b]""", - longDesc = -u""" -Part of the "N2H4 + N2O4" subset -p. 264 -Bath gas: Ar -calculations done at the RCCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p) level of theory -Only High Pressure Limit rate was taken; low limit and 1 atm rate are also available from the same source -Also available from [Klippenstein2009a] in reverse: -label = "NH2 + NH2 <=> N2H4", - kinetics = Troe( - arrheniusHigh = Arrhenius(A=(9.33e-10, 's^-1'), n=-0.414, Ea=(66, 'cal/mol'), T0=(1, 'K'), Tmin=(300, 'K'), Tmax=(2500, 'K')), - arrheniusLow = Arrhenius(A=(2.7e+10, 'cm^3/(mol*s)'), n=-5.49, Ea=(1987, 'cal/mol'), T0=(1, 'K'), Tmin=(300, 'K'), Tmax=(2500, 'K')), + label='NH2 + NH2 <=> N2H4', + kinetics=Troe( + arrheniusHigh=Arrhenius(A=(5.6e+14, 'cm^3/(mol*s)'), n=-0.414, Ea=(66, 'cal/mol'), T0=(1, 'K')), + arrheniusLow=Arrhenius(A=(1.6e34, 'cm^6/(mol^2*s)'), n=-5.49, Ea=(1987, 'cal/mol'), T0=(1, 'K')), + alpha=0.31, + T3=(1e-30, 'K'), + T1=(1e+30, 'K'), + efficiencies={'N#N': 1.0, '[Ar]': 0.5, '[O][O]': 0.61, 'N': 2.93}, + ), + shortDesc=u"""[Glarborg2021]""", + longDesc= +u""" +Reaction 3, Table 2 taken form [Glarborg2021]. Experimental work re-interpreted using direct measurements from +[Altinay&Macdonald2015]. Original values taken from [Klippenstein2009a], computed with the CCSD(T) method employing +either the aug-cc-pvdz or aug-cc-pvtz basis set, adopted by [Glarborg2021] and calculated the relative third-body +efficiencies of Ar, O2, and NH3 and selected other collision partners compared to N2 for the reaction. +Previously taken from [Lin2014b] as the reverse reaction: "N2H4 <=> NH2 + NH2" +Part of the "N2H4 + N2O4" subset p. 264 Bath gas: Ar calculations done at the RCCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p) +level of theory Only High Pressure Limit rate was taken; low limit and 1 atm rate are also available from the same source +Also available from [Klippenstein2009a]: + label = "NH2 + NH2 <=> N2H4", + kinetics = Troe( + arrheniusHigh = Arrhenius(A=(9.33e-10, 's^-1'), n=-0.414, Ea=(66, 'cal/mol'), T0=(1, 'K'), Tmin=(300, 'K'), + Tmax=(2500, 'K')), + arrheniusLow = Arrhenius(A=(2.7e+10, 'cm^3/(mol*s)'), n=-5.49, Ea=(1987, 'cal/mol'), T0=(1, 'K'), Tmin=(300, 'K') + , Tmax=(2500, 'K')), alpha=0.31, T3=(1e-30, 'K'), T1=(1e+30, 'K'), efficiencies={}), Table 3, p. 10245, T range: 300-2500 K, calculated at the CCSD(T) and CAS+1+2+QC level """, @@ -2596,45 +2616,55 @@ entry( index = 139, - label = "NH3 + NO <=> NH2 + HNO", - degeneracy = 1, - kinetics = Arrhenius(A=(1.04e+07, 'cm^3/(mol*s)'), n=1.73, Ea=(56544, 'cal/mol'), T0=(1, 'K'), Tmin=(300, 'K'), Tmax=(5000, 'K')), - shortDesc = u"""[Lin1996a]""", - longDesc = -u""" -Part of the "Thermal de-NOx" mechanism -k1 on p. 7519 -T range: 300-5000 K -calculations done at the UMP2/6-311G-(d,p)//UMP2/6-311G(d,p) level of theory -Added as a training reaction to H_Abstraction + label='NH2 + HNO <=> NH3 + NO', + kinetics=Arrhenius(A=(5.9e+02, 'cm^3/(mol*s)'), n=2.950, Ea=(-3469, 'cal/mol'), T0=(1, 'K')), + shortDesc=u"""[Glarborg2021]""", + longDesc= +u"""Reaction 7, Table 2, Source: [Glarborg2021], Experimental work re-interpreted using direct measurments from +[Altinay&Macdonald2015]. New parameters obtained with the predicted rate expressions by [ShuchengXu & M.C.Lin2009] +the potential energy surface of this reaction has been computed by single-point calculations at the +CCSD(T)/6-311+G(3df,2p) level based on geometries optimized at the CCSD/6-311++G(d,p) level. +Previously taken from [Lin1996a] in reverse. +Reaction Part of the "Thermal de-NOx" mechanism + k1 on p. 7519 + T range: 300-5000 K + calculations done at the UMP2/6-311G-(d,p)//UMP2/6-311G(d,p) level of theory + Added as a training reaction to H_Abstraction """, ) entry( index = 140, - label = "NH2 + NO <=> NNH + OH", - degeneracy = 1, - kinetics = Arrhenius(A=(1.43e+07, 'cm^3/(mol*s)'), n=1.40, Ea=(-1777, 'cal/mol'), T0=(1, 'K'), Tmin=(300, 'K'), Tmax=(2500, 'K')), - shortDesc = u"""[Lin1999a]""", + label = 'NH2 + NO <=> NNH + OH', + kinetics = Arrhenius(A=(4.3e+10, 'cm^3/(mol*s)'), n=0.294, Ea=(-866, 'cal/mol'), + T0=(1, 'K')), + shortDesc =u"""[Glarborg2021]""", longDesc = -u""" -Part of the "Thermal de-NOx" mechanism -k1a -T range: 300-2500 K +u"""Reaction 5a, Table 2,Source: [Glarborg2021]. Experimental work re-interpreted using direct measurements from +[Altinay&Macdonald2015]. Original information taken from [Song&Golden2001] Shock tube experiments were +performed behind reflected shockwaves in a stainless steel shock tube. Rates were calculated using their branching +ratio results data and the overall rate coefficient. + +Previously taken from [Lin1999a] + +Reaction part of the "Thermal de-NOx" mechanism k1a T range: 300-2500 K """, ) entry( index = 141, - label = "NH2 + NO <=> N2 + H2O", - degeneracy = 1, - kinetics = Arrhenius(A=(1.20e+17, 'cm^3/(mol*s)'), n=-1.61, Ea=(298, 'cal/mol'), T0=(1, 'K'), Tmin=(300, 'K'), Tmax=(2500, 'K')), - shortDesc = u"""[Lin1999a]""", + label = 'NH2 + NO <=> N2 + H2O', + kinetics = Arrhenius(A=(2.6e+19, 'cm^3/(mol*s)'), n=-2.369, Ea=(870, 'cal/mol'), + T0=(1, 'K')), + shortDesc = u"""[Glarborg2021]""", longDesc = -u""" -Part of the "Thermal de-NOx" mechanism -k1b -T range: 300-2500 K +u"""Reaction 5b, Table 2,Source: [Glarborg2021]. Experimental work re-interpreted using direct measurements from +[Altinay&Macdonald2015]. Original information taken from [Song&Golden2001] Shock tube experiments were +performed behind reflected shockwaves in a stainless steel shock tube. Rates were calculated using their branching +ratio results data and the overall rate coefficient. + +Previously taken from [Lin1999a]. +Part of the "Thermal de-NOx" mechanism k1b T range: 300-2500 K """, ) @@ -2687,27 +2717,27 @@ entry( index = 145, - label = "NH2 + O2 <=> H2NO + O", - degeneracy = 1, - kinetics = Arrhenius(A=(2.6e+11, 'cm^3/(mol*s)'), n=0.4872, Ea=(29050, 'cal/mol'), T0=(1, 'K')), - shortDesc = u"""[Miller2011]""", - longDesc = -u""" -Part of the "Thermal de-NOx" mechanism -calculated at the (CCSD(T) and QCISD(T)) and multireference CASPT2 and CAS + 1 + 2 + QC electronic structure calculations level + label="NH2 + O2 <=> H2NO + O", + degeneracy=1, + kinetics=Arrhenius(A=(2.6e+11, 'cm^3/(mol*s)'), n=0.4872, Ea=(29050, 'cal/mol'), T0=(1, 'K')), + shortDesc=u"""[Miller2011]""", + longDesc= + u""" + Part of the "Thermal de-NOx" mechanism + calculated at the (CCSD(T) and QCISD(T)) and multireference CASPT2 and CAS + 1 + 2 + QC electronic structure calculations level """, ) entry( index = 146, - label = "NH2 + O2 <=> HNO + OH", - degeneracy = 1, - kinetics = Arrhenius(A=(2.9e-02, 'cm^3/(mol*s)'), n=3.764, Ea=(18185, 'cal/mol'), T0=(1, 'K')), - shortDesc = u"""[Miller2011]""", - longDesc = -u""" -Part of the "Thermal de-NOx" mechanism -calculated at the (CCSD(T) and QCISD(T)) and multireference CASPT2 and CAS + 1 + 2 + QC electronic structure calculations level + label="NH2 + O2 <=> HNO + OH", + degeneracy=1, + kinetics=Arrhenius(A=(2.9e-02, 'cm^3/(mol*s)'), n=3.764, Ea=(18185, 'cal/mol'), T0=(1, 'K')), + shortDesc=u"""[Miller2011]""", + longDesc= + u""" + Part of the "Thermal de-NOx" mechanism + calculated at the (CCSD(T) and QCISD(T)) and multireference CASPT2 and CAS + 1 + 2 + QC electronic structure calculations level """, ) @@ -2749,21 +2779,26 @@ entry( index = 149, - label = "NH2 + OH <=> NH3 + O", - degeneracy = 1, - kinetics = Arrhenius(A=(3.72e+00, 'cm^3/(mol*s)','+|-',9.30e-01), n=3.50, Ea=(-203, 'cal/mol'), T0=(1, 'K'), Tmin=(300, 'K'), Tmax=(2500, 'K')), - shortDesc = u"""[Klippenstein2009a]""", - longDesc = -u""" -Part of the "Thermal de-NOx" mechanism -Table 3, p. 10245 -T range: 300-2500 K -calculated at the (CCSD(T) and CAS+1+2+QC level -Also available from [Klemm1990]: - kinetics = Arrhenius(A=(9.39e+06, 'cm^3/(mol*s)'), n=1.94, Ea=(6461, 'cal/mol'), T0=(1, 'K')), -T range: 448-1790 K, Experimental, Uncertainty: 25% -Train! -""", + label='NH3 + O <=> NH2 + OH', + kinetics=Arrhenius(A=(4.43e+02, 'cm^3/(mol*s)'), n=3.180, Ea=(6739.9, 'cal/mol'), T0=(1, 'K'), + Tmin=(300, 'K'), Tmax=(2500, 'K')), + shortDesc=u"""[Stagni2020]""", + longDesc= +u"""Reaction 4, Table 1, Source: [Stagni2020].The rate of reaction was calculated with CCSD(T) level of theory +performed using Molpro 2010. Electronic structure calculations were performed determining structures and vibrational +frequencies at the M06-2X/aug-cc-pVTZ level and energies at the unrestricted CCSDIJT)/aug-cc-pVTZ level, corrected for +basis set size effect with the change of density fitted (DF) MP2 energies computed using aug-cc-pVQZ and aug-cc-pVTZ +basis sets. + +Previously taken from [Klippenstein2009a]. + +Part of the "Thermal de-NOx" mechanism Table 3, p. 10245 + T range: 300-2500 K + calculated at the (CCSD(T) and CAS+1+2+QC level + Also available from [Klemm1990]: + kinetics = Arrhenius(A=(9.39e+06, 'cm^3/(mol*s)'), n=1.94, Ea=(6461, 'cal/mol'), T0=(1, 'K')), + T range: 448-1790 K, Experimental, Uncertainty: 25% + Train!""", ) entry( @@ -3019,13 +3054,17 @@ entry( index = 165, - label = "NH2 + H2 <=> NH3 + H", - degeneracy = 1, - kinetics = Arrhenius(A=(2.03e+04, 'cm^3/(mol*s)'), n=2.58163, Ea=(6538, 'cal/mol'), T0=(1, 'K'), - Tmin=(300, 'K'), Tmax=(2500, 'K')), - shortDesc = u"""[Staton2019]""", - longDesc = -u""" + label='NH3 + H <=> NH2 + H2', + kinetics=Arrhenius(A=(6.4e+05, 'cm^3/(mol*s)'), n=2.390, Ea=(10171, 'cal/mol'), + T0=(1, 'K')), + shortDesc=u"""[Glarborg2021]""", + longDesc= +u"""Reaction 10, Table 2,Source: [Glarborg2021]. Experimental work re-interpreted using direct measurements from +[Altinay&Macdonald2015]. Pre modified data taken from [Klemm1986] which measured the rate constant by the flash +photolysis-shock tube technique using atomic resonance absorption to monitor [H]t. + +Previously taken from [Staton2019] + Part of the "Thermal de-NOx" mechanism k1_theo on p. 229 T range: 300-2500 K @@ -3033,8 +3072,8 @@ Also available (shock tube) from [Klemm1985] Also available from [Lin1999b] Also available from [Staton2019] in reverse: - kinetics = Arrhenius(A=(2.89e+06, 'cm^3/(mol*s)'), n=2.23036, Ea=(10407, 'cal/mol'), T0=(1, 'K'), - Tmin=(300, 'K'), Tmax=(2500, 'K')), +kinetics = Arrhenius(A=(2.89e+06, 'cm^3/(mol*s)'), n=2.23036, Ea=(10407, 'cal/mol'), T0=(1, 'K'), +Tmin=(300, 'K'), Tmax=(2500, 'K')) """, ) @@ -3056,19 +3095,24 @@ entry( index = 167, - label = "NH2 + H2O <=> NH3 + OH", - degeneracy = 1, - kinetics = Arrhenius(A=(2.62e+13, 'cm^3/(mol*s)'), n=0, Ea=(16846, 'cal/mol'), T0=(1, 'K'), Tmin=(300, 'K'), Tmax=(5000, 'K')), - shortDesc = u"""[Lin1999b]""", - longDesc = -u""" + label='NH3 + OH <=> NH2 + H2O ', + kinetics=Arrhenius(A=(2.0e+06, 'cm^3/(mol*s)'), n=2.040, Ea=(566, 'cal/mol'), + T0=(1, 'K')), + shortDesc= u"""[Glarborg2021]""", + longDesc= +u"""Reaction 12, Table 2,Source: [Glarborg2021]. Experimental work re-interpreted using direct measurements from +[Altinay&Macdonald2015]. Original information by [Salimian1984] with shock tube experiments, NH3 concentration profiles +were monitored by infrared emission spectroscopy. + +Previously taken from [Lin1999b] + Part of the "Thermal de-NOx" mechanism -k4 on p. 233 -T range: 300-5000 K -calculations done at the G2M//B3LYP/6-311G(d,p) level of theory -A lower and upper rate limits were given. Here an average rate was taken. -Fitted to a 2 parameter Arrhenius with a coefficient of determination of 0.9943 -Added as a training reaction to H_Abstraction + k4 on p. 233 + T range: 300-5000 K + calculations done at the G2M//B3LYP/6-311G(d,p) level of theory + A lower and upper rate limits were given. Here an average rate was taken. + Fitted to a 2 parameter Arrhenius with a coefficient of determination of 0.9943 + Added as a training reaction to H_Abstraction """, ) @@ -3163,39 +3207,49 @@ entry( index = 172, - label = "NH2 + NO2 <=> N2O + H2O", - degeneracy = 1, - kinetics = Arrhenius(A=(2.60e+18, 'cm^3/(mol*s)'), n=-2.191, Ea=(455, 'cal/mol'), T0=(1, 'K'), Tmin=(300, 'K'), Tmax=(2000, 'K')), - shortDesc = u"""[Marshall2013]""", - longDesc = -u""" + label='NH2 + NO2 <=> N2O + H2O', + kinetics=Arrhenius(A=(2.2e+11, 'cm^3/(mol*s)'), n=0.11, Ea=(-1186, 'cal/mol'), + T0=(1, 'K')), + shortDesc=u"""[Glarborg2018]""", + longDesc= +u"""Reaction 67, Table 9, Source:[Glarborg2018]. Thermochemistry updated using the Active Thermochemical Tables (ATcT) approach. +Rate parameters for the gas-phase reaction is surveyed, based on available information from experiments and high-level of theory. +Also was evaluated against experimental data. + +Previously taken from [Marshall2013] + Part of the "Thermal de-NOx" mechanism -k1a 3 on p. 9019 -T range: 300-2000 K -calculations done at the RQCISD(T)/CBS(QZ,5Z)//B3LYP/6-311++G(d,p) level of theory -+UCCSD(T)/cc-pVTZ rovibrational analysis with UCCSD-(T)/CBS(aug-cc-pVQZ′,aug-cc-pV5Z′) energies, -CCSDT(Q)/cc-pVDZ higher order corrections, CCSD(T,full)/CBS-(TZ,QZ) core−valence corrections, -CI/aug-cc-pcVTZ relativistic corrections, HF/cc-pVTZ diagonal Born−Oppenheimer corrections, -and B3LYP/6-311++G(d,p) anharmonic ZPE corrections + k1a 3 on p. 9019 + T range: 300-2000 K + calculations done at the RQCISD(T)/CBS(QZ,5Z)//B3LYP/6-311++G(d,p) level of theory + +UCCSD(T)/cc-pVTZ rovibrational analysis with UCCSD-(T)/CBS(aug-cc-pVQZ′,aug-cc-pV5Z′) energies, + CCSDT(Q)/cc-pVDZ higher order corrections, CCSD(T,full)/CBS-(TZ,QZ) core−valence corrections, + CI/aug-cc-pcVTZ relativistic corrections, HF/cc-pVTZ diagonal Born−Oppenheimer corrections, + and B3LYP/6-311++G(d,p) anharmonic ZPE corrections """, ) entry( index = 173, - label = "NH2 + NO2 <=> H2NO + NO", - degeneracy = 1, - kinetics = Arrhenius(A=(9.09e+11, 'cm^3/(mol*s)'), n=0.0321, Ea=(-1512, 'cal/mol'), T0=(1, 'K'), Tmin=(300, 'K'), Tmax=(2000, 'K')), - shortDesc = u"""[Marshall2013]""", - longDesc = -u""" + label = 'NH2 + NO2 <=> H2NO + NO', + kinetics = Arrhenius(A=(8.6e+11, 'cm^3/(mol*s)'), n=0.11, Ea=(-1186, 'cal/mol'), + T0=(1, 'K')), + shortDesc = u"""[Glarborg2018]""", + longDesc = +u"""Reaction 68, Table 9, Source:[Glarborg2018]. Thermochemistry updated using the Active Thermochemical Tables (ATcT) approach. +Rate parameters for the gas-phase reaction is surveyed, based on available information from experiments and high-level of theory. +Also was evaluated against experimental data. + +Previously taken from [Marshall2013] + Part of the "Thermal de-NOx" mechanism -k1b 3 on p. 9019 -T range: 300-2000 K -calculations done at the RQCISD(T)/CBS(QZ,5Z)//B3LYP/6-311++G(d,p) level of theory -+UCCSD(T)/cc-pVTZ rovibrational analysis with UCCSD-(T)/CBS(aug-cc-pVQZ′,aug-cc-pV5Z′) energies, -CCSDT(Q)/cc-pVDZ higher order corrections, CCSD(T,full)/CBS-(TZ,QZ) core−valence corrections, -CI/aug-cc-pcVTZ relativistic corrections, HF/cc-pVTZ diagonal Born−Oppenheimer corrections, -and B3LYP/6-311++G(d,p) anharmonic ZPE corrections + k1a 3 on p. 9019 + T range: 300-2000 K + calculations done at the RQCISD(T)/CBS(QZ,5Z)//B3LYP/6-311++G(d,p) level of theory + +UCCSD(T)/cc-pVTZ rovibrational analysis with UCCSD-(T)/CBS(aug-cc-pVQZ′,aug-cc-pV5Z′) energies, + CCSDT(Q)/cc-pVDZ higher order corrections, CCSD(T,full)/CBS-(TZ,QZ) core−valence corrections, + CI/aug-cc-pcVTZ relativistic corrections, HF/cc-pVTZ diagonal Born−Oppenheimer corrections, + and B3LYP/6-311++G(d,p) anharmonic ZPE corrections """, ) @@ -4718,3 +4772,135 @@ Fitted to 51 data points; dA = *|/ 1.10125, dn = +|- 0.0117499, dEa = +|- 0.117226 kJ/mol """, ) + +entry( + index = 266, + label = 'H2NN(S) + O <=> NH2 + NO', + kinetics = Arrhenius(A=(3.2e+09, 'cm^3/(mol*s)'), n=1.03, Ea=(684.38, 'cal/mol'), + T0=(1, 'K')), + shortDesc = u"""[DeanBozz2000]""", + longDesc = +u"""Reaction taken from Gas-Phase combustion chemistry W.C. Gardiner, Jr. 2000 edition p. 243 d k30d1, +Molecular electronic structure calculations were carried out to characterize the transition states for reactions between +radicals and H2NN and from them the corresponding rate parameters. Semi-empirical calculations with the PM3 method +indicate transition states and A-factors similar to radical addition reactions. +""", +) + +entry( + index = 267, + label = 'H2NN(S) + O <=> OH + NNH', + kinetics = Arrhenius(A=(3.3e+08, 'cm^3/(mol*s)'), n=1.5, Ea=(226.45, 'cal/mol'), + T0=(1, 'K')), + shortDesc = u"""[DeanBozz2000]""", + longDesc = +u"""Reaction taken from Gas-Phase combustion chemistry W.C. Gardiner, Jr. 2000 edition p. 243 d k30d1, +Molecular electronic structure calculations were carried out to characterize the transition states for reactions between +radicals and H2NN and from them the corresponding rate parameters. Semi-empirical calculations with the PM3 method +indicate transition states and A-factors similar to radical addition reactions. +""", +) + +entry( + index = 268, + label = 'NH2 + HO2 <=> HNO + H2O', + kinetics = Arrhenius(A=(2.5e+12, 'cm^3/(mol*s)'), n=0.0, Ea=(0, 'cal/mol'), + T0=(1, 'K')), + shortDesc = u"""[Glarborg2021]""", + longDesc = +u"""Reaction 1b, Table 2,Source: [Glarborg2021]. Experimental work re-interpreted using direct measurements from +[Altinay&Macdonald2015]. Estimation by theoretical study of the singlet surface and previews studies of the three +important branching reactions. +""", +) +entry( + index = 269, + label = 'HNO + O2 <=> NO + HO2', + kinetics = Arrhenius(A=(2.0e+13, 'cm^3/(mol*s)'), n=0.0, Ea=(16000, 'cal/mol'), + T0=(1, 'K')), + shortDesc = u"""[Glarborg2021]""", + longDesc = +u"""Reaction 8, Table 2, Source: [Glarborg2021]. Experimental work re-interpreted using direct measurements from +[Altinay&Macdonald2015]. Original data based on [DeanBozz2000]""", +) + +entry( + index = 270, + label = 'H2NO + O2 <=> HNO + HO2', + duplicate=True, + kinetics = MultiArrhenius( + arrhenius = [ + Arrhenius (A=(4.350e-23, 'cm^3/(mol*s)'), n=3.081, Ea=(14540, 'cal/mol'), T0=(1, 'K'), + Tmin=(500, 'K'), + Tmax=(3000, 'K')), + Arrhenius (A=(1.843e-24, 'cm^3/(mol*s)'), n=3.489, Ea=(13.900, 'cal/mol'), T0=(1, 'K'), + Tmin=(500, 'K'), + Tmax=(1700, 'K')), + ], + ), + shortDesc = u"""[Sarathy2022]""", + longDesc = +u"""Table S2, Supplementary material, Reaction R1(doublet ground-state), Source: [Sarathy2022]. Optimized and characterized the +stationaryy points of the PESs with the ROCCSD method (Detailed in Table 1). +""", +) + +entry( + index = 271, + label = 'H2NO + O2 <=> HNO + HO2', + duplicate = True, + kinetics = Arrhenius(A=(7.354e-21, 'cm^3/(mol*s)'), n=2.578, Ea=(29877, 'cal/mol'), + T0=(1, 'K')), + shortDesc = u"""[Sarathy2022]""", + longDesc = +u"""Table S2, Supplementary material, Reaction R2 (quartet excited-state), Source: [Sarathy2022]. Optimized and +characterized the stationary points of the PESs with the CCSD method (Detailed in Table 1). +""", +) + + +entry( + index = 272, + label = 'NH2 + HO2 <=> NH3 + O2', + duplicate=True, + kinetics = MultiArrhenius( + arrhenius = [ + Arrhenius (A=(4.025e-19, 'cm^3/(mol*s)'), n=2.359, Ea=(-5299, 'cal/mol'), T0=(1, 'K'), + Tmin=(500, 'K'), + Tmax=(3000, 'K')), + Arrhenius (A=(3.619e-18, 'cm^3/(mol*s)'), n=2.080, Ea=(-4760, 'cal/mol'), T0=(1, 'K'), + Tmin=(500, 'K'), + Tmax=(1700, 'K')), + ], + ), + shortDesc = u"""[Sarathy2022]""", + longDesc = +u"""Table S2, Supplementary material, Reaction R4 (triplet ground-state), Source: [Sarathy2022]. Optimized and +characterized the stationary points of the PESs with the CCSD method (Detailed in Table 1). +""", +) + +entry( + index = 273, + label = 'NH2 + HO2 <=> H2NO + OH', + kinetics = Arrhenius(A=(5.794e-21, 'cm^3/(mol*s)'), n=2.639, Ea=(23938, 'cal/mol'), + T0=(1, 'K'), Tmin=(500, 'K'), Tmax=(3000, 'K')), + shortDesc = u"""[Sarathy2022]""", + longDesc = +u"""Table S2, Supplementary material, Reaction R5 (triplet excited-state), Source: [Sarathy2022]. Optimized and +characterized the stationary points of the PESs with the CCSD(T) method (Detailed in Table 1). +""", +) + +entry( + index = 274, + label = 'NH2 + HO2 <=> NH3 + O2', + duplicate=True, + kinetics = Arrhenius(A=(5.794e-21, 'cm^3/(mol*s)'), n=2.639, Ea=(23938, 'cal/mol'), + T0=(1, 'K'), Tmin=(500, 'K'), Tmax=(3000, 'K')), + shortDesc = u"""[Sarathy2022]""", + longDesc = +u"""Table S2, Supplementary material, Reaction R6 (singlet excited-state), Source: [Sarathy2022].Optimized and +characterized the stationary points of the PESs with the CCSD method (Detailed in Table 1). +""", +)