-
Notifications
You must be signed in to change notification settings - Fork 905
/
synthesize.py
100 lines (79 loc) · 4.54 KB
/
synthesize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import argparse
import os
from warnings import warn
from time import sleep
import tensorflow as tf
from hparams import hparams
from infolog import log
from tacotron.synthesize import tacotron_synthesize
from wavenet_vocoder.synthesize import wavenet_synthesize
def prepare_run(args):
modified_hp = hparams.parse(args.hparams)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
run_name = args.name or args.tacotron_name or args.model
taco_checkpoint = os.path.join('logs-' + run_name, 'taco_' + args.checkpoint)
run_name = args.name or args.wavenet_name or args.model
wave_checkpoint = os.path.join('logs-' + run_name, 'wave_' + args.checkpoint)
return taco_checkpoint, wave_checkpoint, modified_hp
def get_sentences(args):
if args.text_list != '':
with open(args.text_list, 'rb') as f:
sentences = list(map(lambda l: l.decode("utf-8")[:-1], f.readlines()))
else:
sentences = hparams.sentences
return sentences
def synthesize(args, hparams, taco_checkpoint, wave_checkpoint, sentences):
log('Running End-to-End TTS Evaluation. Model: {}'.format(args.name or args.model))
log('Synthesizing mel-spectrograms from text..')
wavenet_in_dir = tacotron_synthesize(args, hparams, taco_checkpoint, sentences)
#Delete Tacotron model from graph
tf.reset_default_graph()
#Sleep 1/2 second to let previous graph close and avoid error messages while Wavenet is synthesizing
sleep(0.5)
log('Synthesizing audio from mel-spectrograms.. (This may take a while)')
wavenet_synthesize(args, hparams, wave_checkpoint)
log('Tacotron-2 TTS synthesis complete!')
def main():
accepted_modes = ['eval', 'synthesis', 'live']
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', default='pretrained/', help='Path to model checkpoint')
parser.add_argument('--hparams', default='',
help='Hyperparameter overrides as a comma-separated list of name=value pairs')
parser.add_argument('--name', help='Name of logging directory if the two models were trained together.')
parser.add_argument('--tacotron_name', help='Name of logging directory of Tacotron. If trained separately')
parser.add_argument('--wavenet_name', help='Name of logging directory of WaveNet. If trained separately')
parser.add_argument('--model', default='Tacotron-2')
parser.add_argument('--input_dir', default='training_data/', help='folder to contain inputs sentences/targets')
parser.add_argument('--mels_dir', default='tacotron_output/eval/', help='folder to contain mels to synthesize audio from using the Wavenet')
parser.add_argument('--output_dir', default='output/', help='folder to contain synthesized mel spectrograms')
parser.add_argument('--mode', default='eval', help='mode of run: can be one of {}'.format(accepted_modes))
parser.add_argument('--GTA', default='True', help='Ground truth aligned synthesis, defaults to True, only considered in synthesis mode')
parser.add_argument('--text_list', default='', help='Text file contains list of texts to be synthesized. Valid if mode=eval')
parser.add_argument('--speaker_id', default=None, help='Defines the speakers ids to use when running standalone Wavenet on a folder of mels. this variable must be a comma-separated list of ids')
args = parser.parse_args()
accepted_models = ['Tacotron', 'WaveNet', 'Tacotron-2']
if args.model not in accepted_models:
raise ValueError('please enter a valid model to synthesize with: {}'.format(accepted_models))
if args.mode not in accepted_modes:
raise ValueError('accepted modes are: {}, found {}'.format(accepted_modes, args.mode))
if args.mode == 'live' and args.model == 'Wavenet':
raise RuntimeError('Wavenet vocoder cannot be tested live due to its slow generation. Live only works with Tacotron!')
if args.GTA not in ('True', 'False'):
raise ValueError('GTA option must be either True or False')
if args.model == 'Tacotron-2':
if args.mode == 'live':
warn('Requested a live evaluation with Tacotron-2, Wavenet will not be used!')
if args.mode == 'synthesis':
raise ValueError('I don\'t recommend running WaveNet on entire dataset.. The world might end before the synthesis :) (only eval allowed)')
taco_checkpoint, wave_checkpoint, hparams = prepare_run(args)
sentences = get_sentences(args)
if args.model == 'Tacotron':
_ = tacotron_synthesize(args, hparams, taco_checkpoint, sentences)
elif args.model == 'WaveNet':
wavenet_synthesize(args, hparams, wave_checkpoint)
elif args.model == 'Tacotron-2':
synthesize(args, hparams, taco_checkpoint, wave_checkpoint, sentences)
else:
raise ValueError('Model provided {} unknown! {}'.format(args.model, accepted_models))
if __name__ == '__main__':
main()