-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathmodel_cross_validation.py
143 lines (117 loc) · 5.23 KB
/
model_cross_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from optparse import OptionParser
from sklearn.model_selection import StratifiedShuffleSplit
from keras.utils import to_categorical
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint
from keras.callbacks import TensorBoard
from keras.models import load_model
from utility import networks, metrics_util, globalvars
from utility.audio import extract_dataset
from dataset import Dataset
import numpy as np
import sys
try:
import cPickle as pickle
except ImportError:
import pickle
if __name__ == '__main__':
parser = OptionParser()
parser.add_option('-d', '--dataset', dest='dataset', default='berlin')
parser.add_option('-p', '--dataset_path', dest='path', default='')
parser.add_option('-l', '--load_data', action='store_true', dest='load_data')
parser.add_option('-e', '--feature_extract', action='store_true', dest='feature_extract')
parser.add_option('-c', '--nb_classes', dest='nb_classes', type='int', default=7)
parser.add_option('-s', '--speaker_independence', action='store_true', dest='speaker_independence')
(options, args) = parser.parse_args(sys.argv)
dataset = options.dataset
path = options.path
load_data = options.load_data
feature_extract = options.feature_extract
nb_classes = options.nb_classes
speaker_independence = options.speaker_independence
globalvars.nb_classes = nb_classes
if load_data:
print("Loading data from " + dataset + " data set...")
if dataset not in ('dafex', 'berlin'):
sys.exit("Dataset not registered. Please create a method to read it")
ds = Dataset(path, dataset, decode=False)
print("Dumping " + dataset + " data set to file...")
pickle.dump(ds, open(dataset + '_db.p', 'wb'))
else:
print("Loading data from " + dataset + " data set...")
ds = pickle.load(open(dataset + '_db.p', 'rb'))
nb_samples = len(ds.targets)
print("Number of samples: " + str(nb_samples))
if feature_extract:
f_global = extract_dataset(ds.data, nb_samples=nb_samples, dataset=dataset)
else:
print("Loading features from file...")
f_global = pickle.load(open(dataset + '_features.p', 'rb'))
y = np.array(ds.targets)
y = to_categorical(y)
if speaker_independence:
k_folds = len(ds.test_sets)
splits = zip(ds.train_sets, ds.test_sets)
print("Using speaker independence %s-fold cross validation" % k_folds)
else:
k_folds = 10
sss = StratifiedShuffleSplit(n_splits=k_folds, test_size=0.2, random_state=1)
splits = sss.split(f_global, y)
print("Using %s-fold cross validation by StratifiedShuffleSplit" % k_folds)
cvscores = []
i = 1
for (train, test) in splits:
# initialize the attention parameters with all same values for training and validation
u_train = np.full((len(train), globalvars.nb_attention_param),
globalvars.attention_init_value, dtype=np.float32)
u_test = np.full((len(test), globalvars.nb_attention_param),
globalvars.attention_init_value, dtype=np.float32)
# create network
model = networks.create_softmax_la_network(input_shape=(globalvars.max_len, globalvars.nb_features),
nb_classes=nb_classes)
# compile the model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
file_path = 'weights_' + str(i) + '_fold' + '.h5'
callback_list = [
EarlyStopping(
monitor='val_loss',
patience=10,
verbose=1,
mode='auto'
),
ModelCheckpoint(
filepath=file_path,
monitor='val_acc',
save_best_only='True',
verbose=1,
mode='max'
),
TensorBoard(
log_dir='./Graph',
histogram_freq=0,
write_graph=True,
write_images=True
)
]
# fit the model
hist = model.fit([u_train, f_global[train]],
y[train],
epochs=200,
batch_size=128,
verbose=2,
callbacks=callback_list,
validation_data=([u_test, f_global[test]], y[test]))
# evaluate the best model in ith fold
best_model = load_model(file_path)
print("Evaluating on test set...")
scores = best_model.evaluate([u_test, f_global[test]], y[test], batch_size=128, verbose=1)
print("The highest %s in %dth fold is %.2f%%" % (model.metrics_names[1], i, scores[1] * 100))
cvscores.append(scores[1] * 100)
print("Getting the confusion matrix on whole set...")
u = np.full((f_global.shape[0], globalvars.nb_attention_param),
globalvars.attention_init_value, dtype=np.float32)
predictions = best_model.predict([u, f_global])
confusion_matrix = metrics_util.get_confusion_matrix_one_hot(predictions, y)
print(confusion_matrix)
i += 1
print("%.2f%% (+/- %.2f%%)" % (np.mean(cvscores), np.std(cvscores)))