Skip to content

Latest commit

 

History

History
75 lines (56 loc) · 2.07 KB

README.md

File metadata and controls

75 lines (56 loc) · 2.07 KB

GPU-based Multi-way Join Operators

Accelerating the evaluation of multi-table join queries in databases and graphs using multi-way join (AMHJ) and worst-case optimal join (ALFTJ).

Compile

Compile the dependency cub before compiling our code.

mdkir dependencies/cudpp/build
cd dependencies/cudpp/build
cmake ..
make -j16
cd ../../..

Then, compile our code by the following commands.

mkdir MHJ-GPU/build
cd MHJ-GPU/build
cmake ..
make -j16
cd ../..
mkdir LFTJ-GPU/build
cd LFTJ-GPU/build
cmake ..
make -j16
cd ../..

The versions of the software we use is listed as follows.

cmake: 3.20.2
Make: 4.2.1
GCC: 8.5.0
cuda: 10.2

Execute

Use the following command to run AMHJ.

./MHJ-GPU/build/exec-AMHJ <query-type> <dataset-path> <ooc> <ws> <dro> <fib>

The description and options of each parameter are listed in the following table.

Parameters Description Valid Value
query-type Type of query NORMAL/TRI/FOUR
dataset-path Path of the query N/A
ooc Disable/Enable out of core support 0/1
ws Disable/Enable work sharing 0/1
dro Disable/Enable direct result output 0/1
fib Disable/Enable frequent item buffering 0/1

Use the following command to run ALFTJ.

./LFTJ-GPU/build/exec-LFTJ <dataset-path> <algo-type> <ooc> <ws>

The description and options of each parameter are listed in the following table.

Parameters Description Valid Value
dataset-path Path of the query N/A
algo-type Type of algorithm (BFS/DFS) 0/1
ooc Disable/Enable out of core support 0/1
ws Disable/Enable work sharing 0/1