-
Notifications
You must be signed in to change notification settings - Fork 29
/
BitVector.h
433 lines (329 loc) · 11.9 KB
/
BitVector.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
/*
* Copyright 2008, 2009, 2014 Free Software Foundation, Inc.
* Copyright 2014 Range Networks, Inc.
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef BITVECTORS_H
#define BITVECTORS_H
#include "Vector.h"
#include <stdint.h>
#include <stdio.h>
class BitVector;
class SoftVector;
/** Shift-register (LFSR) generator. */
class Generator {
private:
uint64_t mCoeff; ///< polynomial coefficients. LSB is zero exponent.
uint64_t mState; ///< shift register state. LSB is most recent.
uint64_t mMask; ///< mask for reading state
unsigned mLen; ///< number of bits used in shift register
unsigned mLen_1; ///< mLen - 1
public:
Generator(uint64_t wCoeff, unsigned wLen)
:mCoeff(wCoeff),mState(0),
mMask((1ULL<<wLen)-1),
mLen(wLen),mLen_1(wLen-1)
{ assert(wLen<64); }
void clear() { mState=0; }
/**@name Accessors */
//@{
uint64_t state() const { return mState & mMask; }
unsigned size() const { return mLen; }
//@}
/**
Calculate one bit of a syndrome.
This is in the .h for inlining.
*/
void syndromeShift(unsigned inBit)
{
const unsigned fb = (mState>>(mLen_1)) & 0x01;
mState = (mState<<1) ^ (inBit & 0x01);
if (fb) mState ^= mCoeff;
}
/**
Update the generator state by one cycle.
This is in the .h for inlining.
*/
void encoderShift(unsigned inBit)
{
const unsigned fb = ((mState>>(mLen_1)) ^ inBit) & 0x01;
mState <<= 1;
if (fb) mState ^= mCoeff;
}
};
/** Parity (CRC-type) generator and checker based on a Generator. */
class Parity : public Generator {
protected:
unsigned mCodewordSize;
public:
Parity(uint64_t wCoefficients, unsigned wParitySize, unsigned wCodewordSize)
:Generator(wCoefficients, wParitySize),
mCodewordSize(wCodewordSize)
{ }
/** Compute the parity word and write it into the target segment. */
void writeParityWord(const BitVector& data, BitVector& parityWordTarget, bool invert=true);
/** Compute the syndrome of a received sequence. */
uint64_t syndrome(const BitVector& receivedCodeword);
};
// (pat) Nov 2013. I rationalized the behavior of BitVector and added assertions to core dump code
// that relied on the bad aspects of the original behavior. See comments at VectorBase.
class BitVector : public VectorBase<char>
{
public:
/**@name Constructors. */
//@{
/**@name Casts of Vector constructors. */
BitVector(VectorDataType wData, char* wStart, char* wEnd) : VectorBase<char>(wData, wStart, wEnd) {}
// The one and only copy-constructor.
BitVector(const BitVector&other) : VectorBase<char>() {
VECTORDEBUG("BitVector(%p)",(void*)&other);
if (other.getData()) {
this->clone(other);
} else {
this->makeAlias(other);
}
}
// (pat) Removed default value for len and added 'explicit'. Please do not remove 'explicit';
// it prevents auto-conversion of int to BitVector in constructors.
// Previous code was often ambiguous, especially for L3Frame and descendent constructors, leading to latent bugs.
explicit BitVector(size_t len) { this->vInit(len); }
BitVector() { this->vInit(0); }
/** Build a BitVector by concatenation. */
BitVector(const BitVector& other1, const BitVector& other2) : VectorBase<char>()
{
assert(this->getData() == 0);
this->vConcat(other1,other2);
}
/** Construct from a string of "0" and "1". */
// (pat) Characters that are not '0' or '1' map to '0'.
BitVector(const char* valString);
//@}
/**@name Casts and overrides of Vector operators. */
//@{
// (pat) Please DO NOT add a const anywhere in this method. Use cloneSegment instead.
BitVector segment(size_t start, size_t span)
{
char* wStart = this->begin() + start;
char* wEnd = wStart + span;
assert(wEnd<=this->end());
#if BITVECTOR_REFCNTS
return BitVector(mData,wStart,wEnd);
#else
return BitVector(NULL,wStart,wEnd);
#endif
}
// (pat) Historically the BitVector segment method had const and non-const versions with different behavior.
// I changed the name of the const version to cloneSegment and replaced all uses throughout OpenBTS.
const BitVector cloneSegment(size_t start, size_t span) const
{
BitVector seg = const_cast<BitVector*>(this)->segment(start,span);
// (pat) We are depending on the Return Value Optimization not to invoke the copy-constructor on the result,
// which would result in its immediate destruction while we are still using it.
BitVector result;
result.clone(seg);
return result;
}
BitVector alias() const {
return const_cast<BitVector*>(this)->segment(0,size());
}
BitVector head(size_t span) { return segment(0,span); }
BitVector tail(size_t start) { return segment(start,size()-start); }
// (pat) Please do NOT put the const version of head and tail back in, because historically they were messed up.
// Use cloneSegment instead.
//const BitVector head(size_t span) const { return segment(0,span); }
//const BitVector tail(size_t start) const { return segment(start,size()-start); }
//@}
void zero() { fill(0); }
/**@name FEC operations. */
//@{
/** Calculate the syndrome of the vector with the given Generator. */
uint64_t syndrome(Generator& gen) const;
/** Calculate the parity word for the vector with the given Generator. */
uint64_t parity(Generator& gen) const;
//@}
/** Invert 0<->1. */
void invert();
/**@name Byte-wise operations. */
//@{
/** Reverse an 8-bit vector. */
void reverse8();
/** Reverse groups of 8 within the vector (byte reversal). */
void LSB8MSB();
//@}
/**@name Serialization and deserialization. */
//@{
uint64_t peekField(size_t readIndex, unsigned length) const;
uint64_t peekFieldReversed(size_t readIndex, unsigned length) const;
uint64_t readField(size_t& readIndex, unsigned length) const;
uint64_t readFieldReversed(size_t& readIndex, unsigned length) const;
void fillField(size_t writeIndex, uint64_t value, unsigned length);
void fillFieldReversed(size_t writeIndex, uint64_t value, unsigned length);
void writeField(size_t& writeIndex, uint64_t value, unsigned length);
void writeFieldReversed(size_t& writeIndex, uint64_t value, unsigned length);
void write0(size_t& writeIndex) { writeField(writeIndex,0,1); }
void write1(size_t& writeIndex) { writeField(writeIndex,1,1); }
//@}
/** Sum of bits. */
unsigned sum() const;
/** Reorder bits, dest[i] = this[map[i]]. */
void map(const unsigned *map, size_t mapSize, BitVector& dest) const;
/** Reorder bits, dest[map[i]] = this[i]. */
void unmap(const unsigned *map, size_t mapSize, BitVector& dest) const;
/** Pack into a char array. */
void pack(unsigned char*) const;
// Same as pack but return a string.
std::string packToString() const;
/** Unpack from a char array. */
void unpack(const unsigned char*);
/** Make a hexdump string. */
void hex(std::ostream&) const;
std::string hexstr() const;
/** Unpack from a hexdump string.
* @returns true on success, false on error. */
bool unhex(const char*);
// For this method, 'other' should have been run through the copy-constructor already
// (unless it was newly created, ie foo.dup(L2Frame(...)), in which case we are screwed anyway)
// so the call to makeAlias is redundant.
// This only works if other is already an alias.
void dup(BitVector other) { assert(!this->getData()); makeAlias(other); assert(this->mStart == other.mStart); }
void dup(BitVector &other) { makeAlias(other); assert(this->mStart == other.mStart); }
#if 0
void operator=(const BitVector& other) {
printf("BitVector::operator=\n");
assert(0);
//this->dup(other);
}
#endif
bool operator==(const BitVector &other) const;
/** Copy to dst, not including those indexed in puncture. */
void copyPunctured(BitVector &dst, const unsigned *puncture, const size_t plth);
/** Index a single bit. */
// (pat) Cant have too many ways to do this, I guess.
bool bit(size_t index) const
{
// We put this code in .h for fast inlining.
const char *dp = this->begin()+index;
assert(dp<this->end());
return (*dp) & 0x01;
}
char& operator[](size_t index)
{
assert(this->mStart+index<this->mEnd);
return this->mStart[index];
}
const char& operator[](size_t index) const
{
assert(this->mStart+index<this->mEnd);
return this->mStart[index];
}
/** Set a bit */
void settfb(size_t index, int value)
{
char *dp = this->mStart+index;
assert(dp<this->mEnd);
*dp = value;
}
typedef char* iterator;
typedef const char* const_iterator;
};
// (pat) BitVector2 was an intermediate step in fixing BitVector but is no longer needed.
#define BitVector2 BitVector
std::ostream& operator<<(std::ostream&, const BitVector&);
/**
The SoftVector class is used to represent a soft-decision signal.
Values 0..1 represent probabilities that a bit is "true".
*/
class SoftVector: public Vector<float> {
public:
/** Build a SoftVector of a given length. */
SoftVector(size_t wSize=0):Vector<float>(wSize) {}
/** Construct a SoftVector from a C string of "0", "1", and "X". */
SoftVector(const char* valString);
/** Construct a SoftVector from a BitVector. */
SoftVector(const BitVector& source);
/**
Wrap a SoftVector around a block of floats.
The block will be delete[]ed upon desctuction.
*/
SoftVector(float *wData, unsigned length)
:Vector<float>(wData,length)
{}
SoftVector(float* wData, float* wStart, float* wEnd)
:Vector<float>(wData,wStart,wEnd)
{ }
/**
Casting from a Vector<float>.
Note that this is NOT pass-by-reference.
*/
SoftVector(Vector<float> source)
:Vector<float>(source)
{}
/**@name Casts and overrides of Vector operators. */
//@{
SoftVector segment(size_t start, size_t span)
{
float* wStart = mStart + start;
float* wEnd = wStart + span;
assert(wEnd<=mEnd);
return SoftVector(NULL,wStart,wEnd);
}
SoftVector alias()
{ return segment(0,size()); }
const SoftVector segment(size_t start, size_t span) const
{ return (SoftVector)(Vector<float>::segment(start,span)); }
SoftVector head(size_t span) { return segment(0,span); }
const SoftVector head(size_t span) const { return segment(0,span); }
SoftVector tail(size_t start) { return segment(start,size()-start); }
const SoftVector tail(size_t start) const { return segment(start,size()-start); }
//@}
// (pat) How good is the SoftVector in the sense of the bits being solid?
// Result of 1 is perfect and 0 means all the bits were 0.5
// If plow is non-NULL, also return the lowest energy bit.
float getEnergy(float *low=0) const;
float getSNR() const;
/** Fill with "unknown" values. */
void unknown() { fill(0.5F); }
/** Return a hard bit value from a given index by slicing. */
bool bit(size_t index) const
{
const float *dp = mStart+index;
assert(dp<mEnd);
return (*dp)>0.5F;
}
/** Slice the whole signal into bits. */
BitVector sliced() const;
/** Copy to dst, adding in 0.5 for those indexed in puncture. */
void copyUnPunctured(SoftVector &dst, const unsigned *puncture, const size_t plth);
/** Return a soft bit. */
float softbit(size_t index) const
{
const float *dp = mStart+index;
assert(dp<mEnd);
return *dp;
}
/** Set a soft bit */
void settfb(size_t index, float value)
{
float *dp = mStart+index;
assert(dp<mEnd);
*dp = value;
}
};
std::ostream& operator<<(std::ostream&, const SoftVector&);
#endif
// vim: ts=4 sw=4