-
Notifications
You must be signed in to change notification settings - Fork 96
/
Shape.h
336 lines (282 loc) · 8.46 KB
/
Shape.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/*
Copyright (c) 2013 Randy Gaul http://RandyGaul.net
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef SHAPE_H
#define SHAPE_H
#include "Body.h"
#define MaxPolyVertexCount 64
struct Shape
{
enum Type
{
eCircle,
ePoly,
eCount
};
Shape( ) {}
virtual Shape *Clone( void ) const = 0;
virtual void Initialize( void ) = 0;
virtual void ComputeMass( real density ) = 0;
virtual void SetOrient( real radians ) = 0;
virtual void Draw( void ) const = 0;
virtual Type GetType( void ) const = 0;
Body *body;
// For circle shape
real radius;
// For Polygon shape
Mat2 u; // Orientation matrix from model to world
};
struct Circle : public Shape
{
Circle( real r )
{
radius = r;
}
Shape *Clone( void ) const
{
return new Circle( radius );
}
void Initialize( void )
{
ComputeMass( 1.0f );
}
void ComputeMass( real density )
{
body->m = PI * radius * radius * density;
body->im = (body->m) ? 1.0f / body->m : 0.0f;
body->I = body->m * radius * radius;
body->iI = (body->I) ? 1.0f / body->I : 0.0f;
}
void SetOrient( real radians )
{
}
void Draw( void ) const
{
const uint32 k_segments = 20;
// Render a circle with a bunch of lines
glColor3f( body->r, body->g, body->b );
glBegin( GL_LINE_LOOP );
real theta = body->orient;
real inc = PI * 2.0f / (real)k_segments;
for(uint32 i = 0; i < k_segments; ++i)
{
theta += inc;
Vec2 p( std::cos( theta ), std::sin( theta ) );
p *= radius;
p += body->position;
glVertex2f( p.x, p.y );
}
glEnd( );
// Render line within circle so orientation is visible
glBegin( GL_LINE_STRIP );
Vec2 r( 0, 1.0f );
real c = std::cos( body->orient );
real s = std::sin( body->orient );
r.Set( r.x * c - r.y * s, r.x * s + r.y * c );
r *= radius;
r = r + body->position;
glVertex2f( body->position.x, body->position.y );
glVertex2f( r.x, r.y );
glEnd( );
}
Type GetType( void ) const
{
return eCircle;
}
};
struct PolygonShape : public Shape
{
void Initialize( void )
{
ComputeMass( 1.0f );
}
Shape *Clone( void ) const
{
PolygonShape *poly = new PolygonShape( );
poly->u = u;
for(uint32 i = 0; i < m_vertexCount; ++i)
{
poly->m_vertices[i] = m_vertices[i];
poly->m_normals[i] = m_normals[i];
}
poly->m_vertexCount = m_vertexCount;
return poly;
}
void ComputeMass( real density )
{
// Calculate centroid and moment of interia
Vec2 c( 0.0f, 0.0f ); // centroid
real area = 0.0f;
real I = 0.0f;
const real k_inv3 = 1.0f / 3.0f;
for(uint32 i1 = 0; i1 < m_vertexCount; ++i1)
{
// Triangle vertices, third vertex implied as (0, 0)
Vec2 p1( m_vertices[i1] );
uint32 i2 = i1 + 1 < m_vertexCount ? i1 + 1 : 0;
Vec2 p2( m_vertices[i2] );
real D = Cross( p1, p2 );
real triangleArea = 0.5f * D;
area += triangleArea;
// Use area to weight the centroid average, not just vertex position
c += triangleArea * k_inv3 * (p1 + p2);
real intx2 = p1.x * p1.x + p2.x * p1.x + p2.x * p2.x;
real inty2 = p1.y * p1.y + p2.y * p1.y + p2.y * p2.y;
I += (0.25f * k_inv3 * D) * (intx2 + inty2);
}
c *= 1.0f / area;
// Translate vertices to centroid (make the centroid (0, 0)
// for the polygon in model space)
// Not really necessary, but I like doing this anyway
for(uint32 i = 0; i < m_vertexCount; ++i)
m_vertices[i] -= c;
body->m = density * area;
body->im = (body->m) ? 1.0f / body->m : 0.0f;
body->I = I * density;
body->iI = body->I ? 1.0f / body->I : 0.0f;
}
void SetOrient( real radians )
{
u.Set( radians );
}
void Draw( void ) const
{
glColor3f( body->r, body->g, body->b );
glBegin( GL_LINE_LOOP );
for(uint32 i = 0; i < m_vertexCount; ++i)
{
Vec2 v = body->position + u * m_vertices[i];
glVertex2f( v.x, v.y );
}
glEnd( );
}
Type GetType( void ) const
{
return ePoly;
}
// Half width and half height
void SetBox( real hw, real hh )
{
m_vertexCount = 4;
m_vertices[0].Set( -hw, -hh );
m_vertices[1].Set( hw, -hh );
m_vertices[2].Set( hw, hh );
m_vertices[3].Set( -hw, hh );
m_normals[0].Set( 0.0f, -1.0f );
m_normals[1].Set( 1.0f, 0.0f );
m_normals[2].Set( 0.0f, 1.0f );
m_normals[3].Set( -1.0f, 0.0f );
}
void Set( Vec2 *vertices, uint32 count )
{
// No hulls with less than 3 vertices (ensure actual polygon)
assert( count > 2 && count <= MaxPolyVertexCount );
count = std::min( (int32)count, MaxPolyVertexCount );
// Find the right most point on the hull
int32 rightMost = 0;
real highestXCoord = vertices[0].x;
for(uint32 i = 1; i < count; ++i)
{
real x = vertices[i].x;
if(x > highestXCoord)
{
highestXCoord = x;
rightMost = i;
}
// If matching x then take farthest negative y
else if(x == highestXCoord)
if(vertices[i].y < vertices[rightMost].y)
rightMost = i;
}
int32 hull[MaxPolyVertexCount];
int32 outCount = 0;
int32 indexHull = rightMost;
for (;;)
{
hull[outCount] = indexHull;
// Search for next index that wraps around the hull
// by computing cross products to find the most counter-clockwise
// vertex in the set, given the previos hull index
int32 nextHullIndex = 0;
for(int32 i = 1; i < (int32)count; ++i)
{
// Skip if same coordinate as we need three unique
// points in the set to perform a cross product
if(nextHullIndex == indexHull)
{
nextHullIndex = i;
continue;
}
// Cross every set of three unique vertices
// Record each counter clockwise third vertex and add
// to the output hull
// See : http://www.oocities.org/pcgpe/math2d.html
Vec2 e1 = vertices[nextHullIndex] - vertices[hull[outCount]];
Vec2 e2 = vertices[i] - vertices[hull[outCount]];
real c = Cross( e1, e2 );
if(c < 0.0f)
nextHullIndex = i;
// Cross product is zero then e vectors are on same line
// therefor want to record vertex farthest along that line
if(c == 0.0f && e2.LenSqr( ) > e1.LenSqr( ))
nextHullIndex = i;
}
++outCount;
indexHull = nextHullIndex;
// Conclude algorithm upon wrap-around
if(nextHullIndex == rightMost)
{
m_vertexCount = outCount;
break;
}
}
// Copy vertices into shape's vertices
for(uint32 i = 0; i < m_vertexCount; ++i)
m_vertices[i] = vertices[hull[i]];
// Compute face normals
for(uint32 i1 = 0; i1 < m_vertexCount; ++i1)
{
uint32 i2 = i1 + 1 < m_vertexCount ? i1 + 1 : 0;
Vec2 face = m_vertices[i2] - m_vertices[i1];
// Ensure no zero-length edges, because that's bad
assert( face.LenSqr( ) > EPSILON * EPSILON );
// Calculate normal with 2D cross product between vector and scalar
m_normals[i1] = Vec2( face.y, -face.x );
m_normals[i1].Normalize( );
}
}
// The extreme point along a direction within a polygon
Vec2 GetSupport( const Vec2& dir )
{
real bestProjection = -FLT_MAX;
Vec2 bestVertex;
for(uint32 i = 0; i < m_vertexCount; ++i)
{
Vec2 v = m_vertices[i];
real projection = Dot( v, dir );
if(projection > bestProjection)
{
bestVertex = v;
bestProjection = projection;
}
}
return bestVertex;
}
uint32 m_vertexCount;
Vec2 m_vertices[MaxPolyVertexCount];
Vec2 m_normals[MaxPolyVertexCount];
};
#endif // SHAPE_H