-
Notifications
You must be signed in to change notification settings - Fork 3
/
GT_Starts_fMRI_2Group.m
417 lines (352 loc) · 16.4 KB
/
GT_Starts_fMRI_2Group.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
%%%%%%%%%%%%%% Statestics for Graph Theory Measures %%%%%%%%%%%%
%%%%%%% Author: Rajanikant Panda
%%%%%%% Date of Development: 1st May 2017
%%%%%%% Date of Modification: 10th August 2021
%%%%%%% Supervised: Steven Laureys and Jitka Annen
%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% This Program will featch graph measurees (absolute and
%%%%%%%%%%%%%%%%%%% random) for all group and subjects, and then will
%%%%%%%%%%%%%%%%%%% perform the stats
%%%%%%% Reference papers:
%%%%%%% 1. Holla and Panda et al. (2017). Disrupted resting brain graph measures in individuals at high risk for alcoholism. Psychiatry Research: Neuroimaging, 265, 54-64.
%%%%%%% 2. Thibaut and Panda et al. (2021). Preservation of brain activity in unresponsive patients identifies MCS star. Annals of Neurology, 90(1), 89-100.
%%%%%%%
clc; clear; close all
%% Featch the graph measure for Group/Condition One
path = 'F:\CSG\fMRI\Meditation\GraphTheory\ToSent\GT_Post_Processing\Demo_Data\Control\'
cd(path);
SUBJlist_Group1 = dir('CNT*');
%% Absolute and Random and Normalised CC, PL, SW for Group1_ET data extraction
for i = 1:length(SUBJlist_Group1)
%%
SUBJname = SUBJlist_Group1(i).name;
path1=([path SUBJname]);
cd(path1);
Group1fix_sub_name=SUBJname(1:end);
data=load([Group1fix_sub_name '_ABS.mat'])
Group1_CC(i,:,:)= data.GT_clust_coeff;
Group1_PL(i,:,:)= data.GT_path_length;
Group1_LE(i,:,:)= data.GT_local_eff;
Group1_GE(i,:,:)= data.GT_global_eff;
Group1_Degree(i,:,:)= data.GT_degree;
Group1_PC(i,:,:)= data.GT_participation_coeff;
data_rand=load([Group1fix_sub_name '_RAND.mat'])
Group1_CC_rand(i,:,:,:)= data_rand.GT_clust_coeff_rand;
Group1_PL_rand(i,:,:,:)= data_rand.GT_path_length_rand;
Group1_LE_rand(i,:,:,:)= data_rand.GT_local_eff_rand;
Group1_GE_rand(i,:,:,:)= data_rand.GT_global_eff ; %GT_global_eff_rand;
Group1_Degree_rand(i,:,:,:)= data_rand.GT_degree_rand;
Group1_PC_rand(i,:,:,:)= data_rand.GT_participation_coeff_rand;
end
%%
Spartcity_rng=length(data_rand.sparsity_val);
Group1_CC_50=Group1_CC(:,1:Spartcity_rng,:);
Group1_CC_rand_squ = squeeze(mean(Group1_CC_rand,3));
AvgGroup1_CC=mean(mean(Group1_CC_50,3));
sparsity_CC_Group1_50 = (mean(Group1_CC_50,3));
sparsity_CC_rand_Group1 = mean(Group1_CC_rand_squ,3);
sparsity_CC_rand_Group1_50 = sparsity_CC_rand_Group1 (:,1:Spartcity_rng);
Group1_PL_50=Group1_PL(:,:,1:Spartcity_rng);
AvgGroup1_PL=squeeze(mean(Group1_PL_50));
Sparsity_PL_Group1_50=squeeze(Group1_PL_50);
Sparsity_PL_Group1_rand_squ = squeeze(mean(Group1_PL_rand,3));
Sparsity_PL_Group1_rand_50 = Sparsity_PL_Group1_rand_squ (:,1:Spartcity_rng);
Group1_Degree_50=Group1_Degree(:,1:Spartcity_rng,:);
AvgGroup1_Degree=mean(mean(Group1_Degree_50,3));
sparsity_Degree_Group1_50 = (mean(Group1_Degree_50,3));
Group1_PC_50=Group1_PC(:,1:Spartcity_rng,:);
Group1_PC_rand_squ = squeeze(mean(Group1_PC_rand,3));
AvgGroup1_PC=mean(mean(Group1_PC_50,3));
sparsity_PC_Group1_50 = (mean(Group1_PC_50,3));
sparsity_PC_rand_Group1 = mean(Group1_PC_rand_squ,3);
sparsity_PC_rand_Group1_50 = sparsity_PC_rand_Group1 (:,1:Spartcity_rng);
%%
for i = 1:length(SUBJlist_Group1);
for j = 1:Spartcity_rng;
sparsity_CC_normalised_Group1(i,j) = sparsity_CC_Group1_50(i,j)/sparsity_CC_rand_Group1_50(i,j);
end
end
for i = 1:length(SUBJlist_Group1);
for j = 1:Spartcity_rng;
sparsity_PL_normalised_Group1(i,j) = Sparsity_PL_Group1_50(i,j)/Sparsity_PL_Group1_rand_50(i,j);
end
end
for i = 1:length(SUBJlist_Group1);
for j = 1:Spartcity_rng;
SmallWorldNess_Group1(i,j) = sparsity_CC_normalised_Group1(i,j)/sparsity_PL_normalised_Group1(i,j);
end
end
for i = 1:length(SUBJlist_Group1);
for j = 1:Spartcity_rng;
sparsity_PC_normalised_Group1(i,j) = sparsity_PC_Group1_50(i,j)/sparsity_PC_rand_Group1_50(i,j);
end
end
%%
Group1_LE_50=Group1_LE(:,1:Spartcity_rng,:);
Group1_LE_rand_squ = squeeze(mean(Group1_LE_rand,3));
AvgGroup1_LE=mean(mean(Group1_LE_50,3));
sparsity_LE_Group1_50 = (mean(Group1_LE_50,3));
sparsity_LE_rand_Group1 = mean(Group1_LE_rand_squ,3);
sparsity_LE_rand_Group1_50 = sparsity_LE_rand_Group1 (:,1:Spartcity_rng);
Group1_GE_50=Group1_GE(:,1:Spartcity_rng);
AvgGroup1_GE=squeeze(mean(Group1_GE_50));
Sparsity_GE_Group1_50=squeeze(Group1_GE_50);
Sparsity_GE_Group1_rand_squ = squeeze(mean(Group1_GE_rand,3));
Sparsity_GE_Group1_rand_50 = Sparsity_GE_Group1_rand_squ (:,1:Spartcity_rng);
%%
for i = 1:length(SUBJlist_Group1);
for j = 1:Spartcity_rng;
sparsity_LE_normalised_Group1(i,j) = sparsity_LE_Group1_50(i,j)/sparsity_LE_rand_Group1_50(i,j);
end
end
for i = 1:length(SUBJlist_Group1);
for j = 1:Spartcity_rng;
sparsity_GE_normalised_Group1(i,j) = Sparsity_GE_Group1_50(i,j)/Sparsity_GE_Group1_rand_50(i,j);
end
end
%% Featch the graph measure for Group/Condition-Two
path = 'F:\CSG\fMRI\Meditation\GraphTheory\ToSent\GT_Post_Processing\Demo_Data\Patient\'
cd(path);
SUBJlist_Group2 = dir('PNT*');
%% Absolute and Random and Normalised CC, PL, SW for Group1_ET data extraction
for i = 1:length(SUBJlist_Group2)
SUBJname = SUBJlist_Group2(i).name;
path1=([path SUBJname]);
cd(path1);
Group1fix_sub_name=SUBJname(1:end);
data=load([Group1fix_sub_name '_ABS.mat'])
Group2_CC(i,:,:)= data.GT_clust_coeff;
Group2_PL(i,:,:)= data.GT_path_length;
Group2_LE(i,:,:)= data.GT_local_eff;
Group2_GE(i,:,:)= data.GT_global_eff;
Group2_Degree(i,:,:)= data.GT_degree;
Group2_PC(i,:,:)= data.GT_participation_coeff;
data_rand=load([Group1fix_sub_name '_RAND.mat'])
Group2_CC_rand(i,:,:,:)= data_rand.GT_clust_coeff_rand;
Group2_PL_rand(i,:,:,:)= data_rand.GT_path_length_rand;
Group2_LE_rand(i,:,:,:)= data_rand.GT_local_eff_rand;
Group2_GE_rand(i,:,:,:)= data_rand.GT_global_eff;
Group2_Degree_rand(i,:,:,:)= data_rand.GT_degree_rand;
Group2_PC_rand(i,:,:,:)= data_rand.GT_participation_coeff_rand;
end
%%
Group2_CC_50=Group2_CC(:,1:Spartcity_rng,:);
Group2_CC_rand_squ = squeeze(mean(Group2_CC_rand,3));
AvgGroup2_CC=mean(mean(Group2_CC_50,3));
sparsity_CC_Group2_50 = (mean(Group2_CC_50,3));
sparsity_CC_rand_Group2 = mean(Group2_CC_rand_squ,3);
sparsity_CC_rand_Group2_50 = sparsity_CC_rand_Group2 (:,1:Spartcity_rng);
Group2_PL_50=Group2_PL(:,:,1:Spartcity_rng);
AvgGroup2_PL=squeeze(mean(Group2_PL_50));
Sparsity_PL_Group2_50=squeeze(Group2_PL_50);
Sparsity_PL_Group2_rand_squ = squeeze(mean(Group2_PL_rand,3));
Sparsity_PL_Group2_rand_50 = Sparsity_PL_Group2_rand_squ (:,1:Spartcity_rng);
Group2_Degree_50=Group2_Degree(:,1:Spartcity_rng,:);
AvgGroup2_Degree=mean(mean(Group2_Degree_50,3));
sparsity_Degree_Group2_50 = (mean(Group2_Degree_50,3));
Group2_PC_50=Group2_PC(:,1:Spartcity_rng,:);
Group2_PC_rand_squ = squeeze(mean(Group2_PC_rand,3));
AvgGroup2_PC=mean(mean(Group2_PC_50,3));
sparsity_PC_Group2_50 = (mean(Group2_PC_50,3));
sparsity_PC_rand_Group2 = mean(Group2_PC_rand_squ,3);
sparsity_PC_rand_Group2_50 = sparsity_PC_rand_Group2 (:,1:Spartcity_rng);
%%
for i = 1:length(SUBJlist_Group2);
for j = 1:Spartcity_rng;
sparsity_CC_normalised_Group2(i,j) = sparsity_CC_Group2_50(i,j)/sparsity_CC_rand_Group2_50(i,j);
end
end
for i = 1:length(SUBJlist_Group2);
for j = 1:Spartcity_rng;
sparsity_PL_normalised_Group2(i,j) = Sparsity_PL_Group2_50(i,j)/Sparsity_PL_Group2_rand_50(i,j);
end
end
for i = 1:length(SUBJlist_Group2);
for j = 1:Spartcity_rng;
SmallWorldNess_Group2(i,j) = sparsity_CC_normalised_Group2(i,j)/sparsity_PL_normalised_Group2(i,j);
end
end
for i = 1:length(SUBJlist_Group2);
for j = 1:Spartcity_rng;
sparsity_PC_normalised_Group2(i,j) = sparsity_PC_Group2_50(i,j)/sparsity_PC_rand_Group2_50(i,j);
end
end
%%
Group2_LE_50=Group2_LE(:,1:Spartcity_rng,:);
Group2_LE_rand_squ = squeeze(mean(Group2_LE_rand,3));
AvgGroup2_LE=mean(mean(Group2_LE_50,3));
sparsity_LE_Group2_50 = (mean(Group2_LE_50,3));
sparsity_LE_rand_Group2 = mean(Group2_LE_rand_squ,3);
sparsity_LE_rand_Group2_50 = sparsity_LE_rand_Group2 (:,1:Spartcity_rng);
Group2_GE_50=Group2_GE(:,1:Spartcity_rng);
AvgGroup2_GE=squeeze(mean(Group2_GE_50));
Sparsity_GE_Group2_50=squeeze(Group2_GE_50);
Sparsity_GE_Group2_rand_squ = squeeze(mean(Group2_GE_rand,3));
Sparsity_GE_Group2_rand_50 = Sparsity_GE_Group2_rand_squ (:,1:Spartcity_rng);
%%
for i = 1:length(SUBJlist_Group2);
for j = 1:Spartcity_rng;
sparsity_LE_normalised_Group2(i,j) = sparsity_LE_Group2_50(i,j)/sparsity_LE_rand_Group2_50(i,j);
end
end
for i = 1:length(SUBJlist_Group2);
for j = 1:Spartcity_rng;
sparsity_GE_normalised_Group2(i,j) = Sparsity_GE_Group2_50(i,j)/Sparsity_GE_Group2_rand_50(i,j);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Ploting the results and to do Starts %%%%%%%%%%%%%%%%%%%
%% Absolute CC and PC ploting
figure (1)
y1_CC = mean (sparsity_CC_Group1_50);
z1_CC = std (sparsity_CC_Group1_50)/sqrt (length (sparsity_CC_Group1_50));
errorbar (y1_CC,z1_CC, 'b'); grid on;
hold on
y2_CC = mean (sparsity_CC_Group2_50);
z2_CC = std (sparsity_CC_Group2_50)/sqrt (length (sparsity_CC_Group2_50));
errorbar (y2_CC,z2_CC, 'r'); grid on;
title('Brain Segrigation (Abs. Clustering Coeficent)')
figure (2)
y1_PC = mean (sparsity_PC_Group1_50);
z1_PC = std (sparsity_PC_Group1_50)/sqrt (length (sparsity_PC_Group1_50));
errorbar (y1_PC,z1_PC, 'b'); grid on;
hold on
y2_PC = mean (sparsity_PC_Group2_50);
z2_PC = std (sparsity_PC_Group2_50)/sqrt (length (sparsity_PC_Group2_50));
errorbar (y2_PC,z2_PC, 'r'); grid on;
title('Brain Intigration (Abs. Participation Coefficent)')
%% %Ploting Normalized CC, PC, PL, GE, LE Images
figure (5)
y1_CC = mean (sparsity_CC_normalised_Group1);
z1_CC = std (sparsity_CC_normalised_Group1)/sqrt (length (sparsity_CC_normalised_Group1));
errorbar (y1_CC,z1_CC, 'b'); grid on;
hold on
y2_CC = mean (sparsity_CC_normalised_Group2);
z2_CC = std (sparsity_CC_normalised_Group2)/sqrt (length (sparsity_CC_normalised_Group2));
errorbar (y2_CC,z2_CC, 'r'); grid on;
title('Brain Segrigation (Nor. Clustering Coeficent)')
figure (6)
y1_PC = mean (sparsity_PC_normalised_Group1);
z1_PC = std (sparsity_PC_normalised_Group1)/sqrt (length (sparsity_PC_normalised_Group1));
errorbar (y1_PC,z1_PC, 'b'); grid on;
hold on
y2_PC = mean (sparsity_PC_normalised_Group2);
z2_PC = std (sparsity_PC_normalised_Group2)/sqrt (length (sparsity_PC_normalised_Group2));
errorbar (y2_PC,z2_PC, 'r'); grid on;
title('Brain Intigration (Norm. Participation Coeficent)')
figure (7)
hold on
y1_PL = mean (sparsity_PL_normalised_Group1);
z1_PL = std (sparsity_PL_normalised_Group1)/sqrt (length (sparsity_PL_normalised_Group1));
errorbar (y1_PL,z1_PL, 'b'); grid on;
hold on
y2_PL = mean (sparsity_PL_normalised_Group2);
z2_PL = std (sparsity_PL_normalised_Group2)/sqrt (length (sparsity_PL_normalised_Group2));
errorbar (y2_PL,z2_PL, 'r'); grid on;
title('Normalised Path Length')
figure (8)
y1_SW = mean (SmallWorldNess_Group1);
z1_SW = std (SmallWorldNess_Group1)/sqrt (length (SmallWorldNess_Group1));
errorbar (y1_SW,z1_SW, 'b'); grid on;
hold on
y2_SW = mean (SmallWorldNess_Group2);
z2_SW = std (SmallWorldNess_Group2)/sqrt (length (SmallWorldNess_Group2));
errorbar (y2_SW,z2_SW, 'r'); grid on;
title('Small Worldness')
% % % figure (9)
% % % y1_CC = mean (sparsity_LE_normalised_Group1);
% % % z1_CC = std (sparsity_LE_normalised_Group1)/sqrt (length (sparsity_LE_normalised_Group1));
% % % errorbar (y1_CC,z1_CC, 'b'); grid on;
% % % hold on
% % % y2_CC = mean (sparsity_LE_normalised_Group2);
% % % z2_CC = std (sparsity_LE_normalised_Group2)/sqrt (length (sparsity_LE_normalised_Group2));
% % % errorbar (y2_CC,z2_CC, 'r'); grid on;
% % % title('Normalised Local Eficency')
figure (10)
hold on
y1_PL = mean (sparsity_GE_normalised_Group1);
z1_PL = std (sparsity_GE_normalised_Group1)/sqrt (length (sparsity_GE_normalised_Group1));
errorbar (y1_PL,z1_PL, 'b'); grid on;
hold on
y2_PL = mean (sparsity_GE_normalised_Group2);
z2_PL = std (sparsity_GE_normalised_Group2)/sqrt (length (sparsity_GE_normalised_Group2));
errorbar (y2_PL,z2_PL, 'r'); grid on;
title('Normalised Global Eficency')
%% --------------t-stats between Group2 and Group1 sparsity level------------%
for i = 1:Spartcity_rng
[h_CC1(i),p_CC1(i)] = ttest2(sparsity_CC_normalised_Group2(:,i),sparsity_CC_normalised_Group1(:,i),0.05,'right');
end
h_CC1
p_CC1
%%
for i = 1:Spartcity_rng
[h_SW1(i),p_SW1(i)] = ttest2(SmallWorldNess_Group2(:,i),SmallWorldNess_Group1(:,i),0.05,'right');
end
h_SW1
p_SW1
%%
for i = 1:Spartcity_rng
[h_PC1(i),p_PC1(i)] = ttest2(sparsity_PC_normalised_Group2(:,i),sparsity_PC_normalised_Group1(:,i),0.05,'left');
end
h_PC1
p_PC1
%% ----------------------%% Brain resion significant Computations for CC %-------------%
sparsity_CC_Group1_ROI = squeeze(mean(Group1_CC_50,2));
sparsity_CC_Group2_ROI = squeeze(mean(Group2_CC_50,2));
sparsity_CC_rand_Group1_ROI = mean(Group1_CC_rand_squ,2);
sparsity_CC_rand_Group2_ROI = mean(Group2_CC_rand_squ,2);
%
for i = 1:length(SUBJlist_Group1);
for j = 1:size(sparsity_CC_Group1_ROI,2);
sparsity_CC_normalised_Group1_ROI(i,j) = sparsity_CC_Group1_ROI(i,j)/sparsity_CC_rand_Group1_ROI(i,j);
end
end
for i = 1:length(SUBJlist_Group2);
for j = 1:size(sparsity_CC_Group2_ROI,2);
sparsity_CC_normalised_Group2_ROI(i,j) = sparsity_CC_Group2_ROI(i,j)/sparsity_CC_rand_Group2_ROI(i,j);
end
end
%% ----------------------%% Brain resion significant Computations for PC %-------------%
sparsity_PC_Group1_ROI = squeeze(mean(Group1_PC_50,2));
sparsity_PC_Group2_ROI = squeeze(mean(Group2_PC_50,2));
sparsity_PC_rand_Group1_ROI = mean(Group1_PC_rand_squ,2);
sparsity_PC_rand_Group2_ROI = mean(Group2_PC_rand_squ,2);
for i = 1:length(SUBJlist_Group1);
for j = 1:size(sparsity_CC_Group1_ROI,2);
sparsity_PC_normalised_Group1_ROI(i,j) = sparsity_PC_Group1_ROI(i,j)/sparsity_PC_rand_Group1_ROI(i,j);
end
end
for i = 1:length(SUBJlist_Group2);
for j = 1:size(sparsity_CC_Group2_ROI,2);
sparsity_PC_normalised_Group2_ROI(i,j) = sparsity_PC_Group2_ROI(i,j)/sparsity_PC_rand_Group2_ROI(i,j);
end
end
%% Brain resion significant Computations for CC
for i = 1:size(sparsity_CC_Group1_ROI,2)
[h_CC_ROI_Normalised(i),p_CC_ROI_Normalised(i)] = ttest2(sparsity_CC_normalised_Group1_ROI(:,i),sparsity_CC_normalised_Group2_ROI(:,i),0.001,'left');
end
h_CC_ROI_Normalised
p_CC_ROI_Normalised
%% Brain resion significant Computations for PC
for i = 1:size(sparsity_PC_Group2_ROI,2)
[h_PC_ROI_Normalised(i),p_PC_ROI_Normalised(i)] = ttest2(sparsity_PC_normalised_Group1_ROI(:,i),sparsity_PC_normalised_Group2_ROI(:,i),0.001,'right');
end
h_PC_ROI_Normalised
p_PC_ROI_Normalised
%%[p,h]=fdr(p_CC_ROI_Normalised,0.05);
%p
%% Graphical Plot od GT measures %%%
% % % tpz_cc_control = trapz(sparsity_CC_normalised_Control(:,1:30),2)/30;
% % % tpz_cc_Patient = trapz(sparsity_CC_normalised_Patient(:,1:30),2)/30;
% % % tpz_pl_control = trapz(sparsity_PL_normalised_Control(:,1:30),2)/30;
% % % tpz_pl_Patient = trapz(sparsity_PL_normalised_Patient(:,1:30),2)/30;
% % % tpz_sw_control = trapz(SmallWorldNess_Control(:,1:30),2)/30;
% % % tpz_sw_Patient = trapz(SmallWorldNess_Patient(:,1:30),2)/30;
% % % tpz_le_control = trapz(sparsity_LE_normalised_Control(:,1:30),2)/30;
% % % tpz_le_Patient = trapz(sparsity_LE_normalised_Patient(:,1:30),2)/30;
% % % tpz_ge_control = trapz(sparsity_GE_normalised_Control(:,1:30),2)/30;
% % % tpz_ge_Patient = trapz(sparsity_GE_normalised_Patient(:,1:30),2)/30;
% % %
% % % tpz_GT = [tpz_cc_control tpz_cc_Patient tpz_pl_control tpz_pl_Patient tpz_sw_control tpz_sw_Patient tpz_le_control tpz_le_Patient tpz_ge_control tpz_ge_Patient]
% % %
% % % [p,h]=ttest2(tpz_GT(:,1),tpz_GT(:,2), 0.05,'left')