forked from faustomilletari/VNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
43 lines (34 loc) · 1.74 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import sys
import os
import numpy as np
import VNet as VN
basePath=os.getcwd()
params = dict()
params['DataManagerParams']=dict()
params['ModelParams']=dict()
#params of the algorithm
params['ModelParams']['numcontrolpoints']=2
params['ModelParams']['sigma']=15
params['ModelParams']['device']=0
params['ModelParams']['prototxtTrain']=os.path.join(basePath,'Prototxt/train_noPooling_ResNet_cinque.prototxt')
params['ModelParams']['prototxtTest']=os.path.join(basePath,'Prototxt/test_noPooling_ResNet_cinque.prototxt')
params['ModelParams']['snapshot']=0
params['ModelParams']['dirTrain']=os.path.join(basePath,'Dataset/Train')
params['ModelParams']['dirTest']=os.path.join(basePath,'Dataset/Test')
params['ModelParams']['dirResult']=os.path.join(basePath,'Results') #where we need to save the results (relative to the base path)
params['ModelParams']['dirSnapshots']=os.path.join(basePath,'Models/MRI_cinque_snapshots/') #where to save the models while training
params['ModelParams']['batchsize'] = 2 #the batchsize
params['ModelParams']['numIterations'] = 100000 #the number of iterations
params['ModelParams']['baseLR'] = 0.0001 #the learning rate, initial one
params['ModelParams']['nProc'] = 1 #the number of threads to do data augmentation
#params of the DataManager
params['DataManagerParams']['dstRes'] = np.asarray([1,1,1.5],dtype=float)
params['DataManagerParams']['VolSize'] = np.asarray([128,128,64],dtype=int)
params['DataManagerParams']['normDir'] = False #if rotates the volume according to its transformation in the mhd file. Not reccommended.
model=VN.VNet(params)
train = [i for i, j in enumerate(sys.argv) if j == '-train']
if len(train)>0:
model.train()
test = [i for i, j in enumerate(sys.argv) if j == '-test']
if len(test) > 0:
model.test()