-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3dunet.py
76 lines (61 loc) · 3.81 KB
/
3dunet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from keras.models import Model
from keras.layers import Input, Conv3D, MaxPooling3D, concatenate, Conv3DTranspose, BatchNormalization, Dropout, Lambda
from keras.optimizers import Adam
from keras.metrics import MeanIoU
kernel_initializer = 'he_uniform' #Try others if you want
################################################################
def simple_unet_model(IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH, IMG_CHANNELS, num_classes):
#Build the model
inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH, IMG_CHANNELS))
#s = Lambda(lambda x: x / 255)(inputs) #No need for this if we normalize our inputs beforehand
s = inputs
#Contraction path
c1 = Conv3D(16, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(s)
c1 = Dropout(0.1)(c1)
c1 = Conv3D(16, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(c1)
p1 = MaxPooling3D((2, 2, 2))(c1)
c2 = Conv3D(32, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(p1)
c2 = Dropout(0.1)(c2)
c2 = Conv3D(32, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(c2)
p2 = MaxPooling3D((2, 2, 2))(c2)
c3 = Conv3D(64, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(p2)
c3 = Dropout(0.2)(c3)
c3 = Conv3D(64, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(c3)
p3 = MaxPooling3D((2, 2, 2))(c3)
c4 = Conv3D(128, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(p3)
c4 = Dropout(0.2)(c4)
c4 = Conv3D(128, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(c4)
p4 = MaxPooling3D(pool_size=(2, 2, 2))(c4)
c5 = Conv3D(256, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(p4)
c5 = Dropout(0.3)(c5)
c5 = Conv3D(256, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(c5)
#Expansive path
u6 = Conv3DTranspose(128, (2, 2, 2), strides=(2, 2, 2), padding='same')(c5)
u6 = concatenate([u6, c4])
c6 = Conv3D(128, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(u6)
c6 = Dropout(0.2)(c6)
c6 = Conv3D(128, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(c6)
u7 = Conv3DTranspose(64, (2, 2, 2), strides=(2, 2, 2), padding='same')(c6)
u7 = concatenate([u7, c3])
c7 = Conv3D(64, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(u7)
c7 = Dropout(0.2)(c7)
c7 = Conv3D(64, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(c7)
u8 = Conv3DTranspose(32, (2, 2, 2), strides=(2, 2, 2), padding='same')(c7)
u8 = concatenate([u8, c2])
c8 = Conv3D(32, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(u8)
c8 = Dropout(0.1)(c8)
c8 = Conv3D(32, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(c8)
u9 = Conv3DTranspose(16, (2, 2, 2), strides=(2, 2, 2), padding='same')(c8)
u9 = concatenate([u9, c1])
c9 = Conv3D(16, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(u9)
c9 = Dropout(0.1)(c9)
c9 = Conv3D(16, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, padding='same')(c9)
outputs = Conv3D(num_classes, (1, 1, 1), activation='softmax')(c9)
model = Model(inputs=[inputs], outputs=[outputs])
#compile model outside of this function to make it flexible.
model.summary()
return model
#Test if everything is working ok.
model = simple_unet_model(128, 128, 128, 3, 4)
print(model.input_shape)
print(model.output_shape)