Please cite our paper :-*
COMING SOON
See the Challenge Website for details on the challenge.
Our solution to this challenge rewuires no code changes at all. All we do is optimize nnU-Net's hyperparameters (architecture, batch size, patch size) through modifying the nnUNetplans.json file.
Use the latest pytorch version!
We recommend you use the latest nnU-Net version as well! We ran our trainings with commit 913705f which you can try in case something doesn't work as expected:
pip install git+https://github.com/MIC-DKFZ/nnUNet.git@913705f
- Download and extract the AutoPET II dataset
- Convert it to nnU-Net format by running
python nnunetv2/dataset_conversion/Dataset221_AutoPETII_2023.py FOLDER
where folder is the extracted AutoPET II dataset.
We deviate a little from the standard nnU-Net procedure because all our experiments are based on just the 3d_fullres configuration
Run the following commands:
nnUNetv2_extract_fingerprint -d 221
extracts the dataset fingerprintnnUNetv2_plan_experiment -d 221
does the planning for the plain unetnnUNetv2_plan_experiment -d 221 -pl ResEncUNetPlanner
does the planning for the residual encoder unetnnUNetv2_preprocess -d 221 -c 3d_fullres
runs all the preprocessing we need
Please read the information on how to modify plans files first!!!
It is easier to have everything in one plans file, so the first thing we do is transfer the ResEnc UNet to the default plans file. We use the configuration inheritance feature of nnU-Net to make it use the same data as the 3d_fullres configuration. Add the following to the 'configurations' dict in 'nnUNetPlans.json':
"3d_fullres_resenc": {
"inherits_from": "3d_fullres",
"UNet_class_name": "ResidualEncoderUNet",
"n_conv_per_stage_encoder": [
1,
3,
4,
6,
6,
6
],
"n_conv_per_stage_decoder": [
1,
1,
1,
1,
1
]
},
(these values are basically just copied from the 'nnUNetResEncUNetPlans.json' file! With everything redundant being omitted thanks to inheritance from 3d_fullres)
Now we crank up the patch and batch sizes. Add the following configurations:
"3d_fullres_resenc_bs80": {
"inherits_from": "3d_fullres_resenc",
"batch_size": 80
},
"3d_fullres_resenc_192x192x192_b24": {
"inherits_from": "3d_fullres_resenc",
"patch_size": [
192,
192,
192
],
"batch_size": 24
}
Save the file (and check for potential Syntax Errors!)
Training each model requires 8 Nvidia A100 40GB GPUs. Expect training to run for 5-7 days. You'll need a really good CPU to handle the data augmentation! 128C/256T are a must! If you have less threads available, scale down nnUNet_n_proc_DA accordingly.
nnUNet_compile=T nnUNet_n_proc_DA=28 nnUNetv2_train 221 3d_fullres_resenc_bs80 0 -num_gpus 8
nnUNet_compile=T nnUNet_n_proc_DA=28 nnUNetv2_train 221 3d_fullres_resenc_bs80 1 -num_gpus 8
nnUNet_compile=T nnUNet_n_proc_DA=28 nnUNetv2_train 221 3d_fullres_resenc_bs80 2 -num_gpus 8
nnUNet_compile=T nnUNet_n_proc_DA=28 nnUNetv2_train 221 3d_fullres_resenc_bs80 3 -num_gpus 8
nnUNet_compile=T nnUNet_n_proc_DA=28 nnUNetv2_train 221 3d_fullres_resenc_bs80 4 -num_gpus 8
nnUNet_compile=T nnUNet_n_proc_DA=28 nnUNetv2_train 221 3d_fullres_resenc_192x192x192_b24 0 -num_gpus 8
nnUNet_compile=T nnUNet_n_proc_DA=28 nnUNetv2_train 221 3d_fullres_resenc_192x192x192_b24 1 -num_gpus 8
nnUNet_compile=T nnUNet_n_proc_DA=28 nnUNetv2_train 221 3d_fullres_resenc_192x192x192_b24 2 -num_gpus 8
nnUNet_compile=T nnUNet_n_proc_DA=28 nnUNetv2_train 221 3d_fullres_resenc_192x192x192_b24 3 -num_gpus 8
nnUNet_compile=T nnUNet_n_proc_DA=28 nnUNetv2_train 221 3d_fullres_resenc_192x192x192_b24 4 -num_gpus 8
Done!
(We also provide pretrained weights in case you don't want to invest the GPU resources, see below)
Our final model is an ensemble of two configurations:
- ResEnc UNet with batch size 80
- ResEnc UNet with patch size 192x192x192 and batch size 24
To run inference with these models, do the following:
- Download the pretrained model weights from Zenodo
- Install both .zip files using
nnUNetv2_install_pretrained_model_from_zip
- Make sure
- Now you can run inference on new cases with
nnUNetv2_predict
:nnUNetv2_predict -i INPUT -o OUTPUT1 -d 221 -c 3d_fullres_resenc_bs80 -f 0 1 2 3 4 -step_size 0.6 --save_probabilities
nnUNetv2_predict -i INPUT -o OUTPUT2 -d 221 -c 3d_fullres_resenc_192x192x192_b24 -f 0 1 2 3 4 --save_probabilities
nnUNetv2_ensemble -i OUTPUT1 OUTPUT2 -o OUTPUT_ENSEMBLE
Note that our inference Docker omitted TTA via mirroring along the axial direction during prediction (only sagittal + coronal mirroring). This was done to keep the inference time below 10 minutes per image on a T4 GPU (we actually never tested whether we could have left this enabled). Just leave it on! You can also leave the step_size at default for the 3d_fullres_resenc_bs80.