-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathglados.py
134 lines (121 loc) · 4.74 KB
/
glados.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import numpy as np
from utils.tools import prepare_text
from scipy.io.wavfile import write
import time
import tempfile
import subprocess
from pydub import AudioSegment
from pydub.playback import play
from nltk import download
from nltk.tokenize import sent_tokenize
from sys import modules as mod
try:
import winsound
except ImportError:
from subprocess import call
print("Initializing TTS Engine...")
kwargs = {
'stdout':subprocess.PIPE,
'stderr':subprocess.PIPE,
'stdin':subprocess.PIPE
}
class tts_runner:
def __init__(self, use_p1: bool=False, log: bool=False):
self.log = log
if use_p1:
self.emb = torch.load('models/emb/glados_p1.pt')
else:
self.emb = torch.load('models/emb/glados_p2.pt')
# Select the device
if torch.cuda.is_available():
self.device = 'cuda'
elif torch.is_vulkan_available():
self.device = 'vulkan'
else:
self.device = 'cpu'
# Load models
self.glados = torch.jit.load('models/glados-new.pt')
self.vocoder = torch.jit.load('models/vocoder-gpu.pt', map_location=self.device)
for i in range(2):
init = self.glados.generate_jit(prepare_text(str(i)), self.emb, 1.0)
init_mel = init['mel_post'].to(self.device)
init_vo = self.vocoder(init_mel)
def run_tts(self, text, alpha: float=1.0) -> AudioSegment:
x = prepare_text(text)
with torch.no_grad():
# Generate generic TTS-output
old_time = time.time()
tts_output = self.glados.generate_jit(x, self.emb, alpha)
if self.log:
print("Forward Tacotron took " + str((time.time() - old_time) * 1000) + "ms")
# Use HiFiGAN as vocoder to make output sound like GLaDOS
old_time = time.time()
mel = tts_output['mel_post'].to(self.device)
audio = self.vocoder(mel)
if self.log:
print("HiFiGAN took " + str((time.time() - old_time) * 1000) + "ms")
# Normalize audio to fit in wav-file
audio = audio.squeeze()
audio = audio * 32768.0
audio = audio.cpu().numpy().astype('int16')
output_file = tempfile.TemporaryFile()
write(output_file, 22050, audio)
sound = AudioSegment.from_wav(output_file)
output_file.close()
return sound
def speak_one_line(self, audio, name: str):
audio.export(name, format = "wav")
if 'winsound' in mod:
winsound.PlaySound(name, winsound.SND_FILENAME | winsound.SND_ASYNC)
else:
try:
subprocess.Popen(["play", name], **kwargs)
except FileNotFoundError:
try:
subprocess.Popen(["aplay", name], **kwargs)
except FileNotFoundError:
subprocess.Popen(["pw-play", name], **kwargs)
def speak(self, text, alpha: float=1.0, save: bool=False, delay: float=0.1):
download('punkt',quiet=self.log)
sentences = sent_tokenize(text)
audio = self.run_tts(sentences[0])
pause = AudioSegment.silent(duration=delay)
old_line = AudioSegment.silent(duration=1.0) + audio
self.speak_one_line(old_line, "old_line.wav")
old_time = time.time()
old_dur = old_line.duration_seconds
new_dur = old_dur
if len(sentences) > 1:
for idx in range(1, len(sentences)):
if idx % 2 == 1:
new_line = self.run_tts(sentences[idx])
audio = audio + pause + new_line
new_dur = new_line.duration_seconds
else:
old_line = self.run_tts(sentences[idx])
audio = audio + pause + old_line
new_dur = old_line.duration_seconds
time_left = old_dur - time.time() + old_time
if time_left <= 0 and self.log:
print("Processing is slower than realtime!")
else:
time.sleep(time_left + delay)
if idx % 2 == 1:
self.speak_one_line(new_line, "new_line.wav")
else:
self.speak_one_line(old_line, "old_line.wav")
old_time = time.time()
old_dur = new_dur
else:
time.sleep(old_dur + 0.1)
audio.export("output.wav", format = "wav")
time_left = old_dur - time.time() + old_time
if time_left >= 0:
time.sleep(time_left + delay)
if __name__ == "__main__":
glados = tts_runner(False, True)
while True:
text = input("Input: ")
if len(text) > 0:
glados.speak(text, True)