-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathvideo_ldmk_meta.py
54 lines (43 loc) · 1.83 KB
/
video_ldmk_meta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
import cv2
import pickle
import numpy as np
from imageio import mimread
from tqdm import tqdm
import face_alignment
from argparse import ArgumentParser
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--video_dir", default='', help="video directory")
parser.add_argument("--out_dir", default='video_ldmk_meta', help="directory to save output pickle files")
parser.add_argument("--cpu", dest="cpu", action="store_true", help="use cpu mode")
parser.add_argument("--vis_ldmk", dest="vis_ldmk", action="store_true", help="visualize predicted landmarks")
opt = parser.parse_args()
if not os.path.exists(opt.out_dir):
os.mkdir(opt.out_dir)
if opt.cpu:
device = 'cpu'
else:
device = 'cuda'
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, face_detector='sfd', device=device)
for video_name in tqdm(os.listdir(opt.video_dir)):
print('processing {}'.format(video_name))
video_pth = os.path.join(opt.video_dir, video_name)
video = np.array(mimread(video_pth))
video_ldmk_meta = {}
for i in range(video.shape[0]):
ldmk_pred = fa.get_landmarks(video[i])[0]
video_ldmk_meta[i] = {}
if len(ldmk_pred) == 0:
continue
else:
video_ldmk_meta[i]['ldmk'] = ldmk_pred
if opt.vis_ldmk:
img = video[i]
for j in range(ldmk_pred.shape[0]):
cv2.circle(img, (int(ldmk_pred[j, 0]), int(ldmk_pred[j, 1])), radius=1, color=(255, 255, 255))
cv2.imshow('vis', img)
cv2.waitKey(0)
f = open(os.path.join(opt.out_dir, video_name.split('.')[0] + ".pkl"), 'wb')
pickle.dump(video_ldmk_meta, f)
f.close()