diff --git a/docs/guides/serverless-template-hamiltonian-simulation.ipynb b/docs/guides/serverless-template-hamiltonian-simulation.ipynb index 0b8423a0000..2e4cd4965aa 100644 --- a/docs/guides/serverless-template-hamiltonian-simulation.ipynb +++ b/docs/guides/serverless-template-hamiltonian-simulation.ipynb @@ -2,7 +2,6 @@ "cells": [ { "cell_type": "markdown", - "id": "b1fde164-2b2b-473b-93b8-30168882076b", "metadata": { "editable": true, "slideshow": { @@ -16,7 +15,6 @@ }, { "cell_type": "markdown", - "id": "4bbc25a8-5315-417f-bf35-7ac715ebdf98", "metadata": { "editable": true, "slideshow": { @@ -38,15 +36,12 @@ "qiskit-ibm-runtime~=0.32.0\n", "qiskit-serverless~=0.18.0\n", "qiskit-ibm-catalog~=0.2.0\n", - "qiskit-addon-aqc-tensor[quimb-jax]~=0.1.0\n", - "mergedeep==1.3.4\n", "```\n", "" ] }, { "cell_type": "markdown", - "id": "5092090f-0fb8-436e-8099-3d3059367efc", "metadata": { "editable": true, "slideshow": { @@ -66,7 +61,6 @@ }, { "cell_type": "markdown", - "id": "efde8ea3-8ba4-4859-b7cd-7c4e5c049783", "metadata": { "editable": true, "slideshow": { @@ -85,7 +79,6 @@ { "cell_type": "code", "execution_count": 1, - "id": "921071c7-910c-48b7-87f1-f9f6f4a5ca61", "metadata": { "editable": true, "slideshow": { @@ -105,7 +98,6 @@ }, { "cell_type": "markdown", - "id": "227d4f76-14cd-4853-b986-f6b09cecb26a", "metadata": { "editable": true, "slideshow": { @@ -122,7 +114,6 @@ { "cell_type": "code", "execution_count": 2, - "id": "0123aa49-25ee-44d3-93ce-9b1af13487df", "metadata": { "editable": true, "slideshow": { @@ -135,7 +126,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Overwriting ./source_files/template_hamiltonian_simulation.py\n" + "Writing ./source_files/template_hamiltonian_simulation.py\n" ] } ], @@ -174,8 +165,7 @@ }, { "cell_type": "code", - "execution_count": 4, - "id": "68724647-f6aa-4977-ab40-5be3de997499", + "execution_count": 3, "metadata": { "editable": true, "slideshow": { @@ -234,7 +224,6 @@ }, { "cell_type": "markdown", - "id": "939b9b9c-34b7-40a1-92fc-2b1639aee349", "metadata": {}, "source": [ "When the function template is running, it is helpful to return information in the logs by using print statements, so that you can better evaluate the workload's progress. Following is a simple example of printing the `estimator_options` so there is a record of the actual Estimator options used. There are many more similar examples throughout the program to report progress during execution, including the value of the objective function during the iterative component of AQC-Tensor, and the two-qubit depth of the final instruction set architecture (ISA) circuit intended for execution on hardware." @@ -242,10 +231,17 @@ }, { "cell_type": "code", - "execution_count": null, - "id": "d8d67489-9c92-42c0-a7fc-a347077ac72e", + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Appending to ./source_files/template_hamiltonian_simulation.py\n" + ] + } + ], "source": [ "%%writefile --append ./source_files/template_hamiltonian_simulation.py\n", "\n", @@ -254,7 +250,6 @@ }, { "cell_type": "markdown", - "id": "a6b70531-d5c4-42c5-8fcc-9e19c32f32e8", "metadata": {}, "source": [ "### Validate the inputs\n", @@ -264,10 +259,17 @@ }, { "cell_type": "code", - "execution_count": null, - "id": "f1b690c4-2e06-4f2a-916c-827237a4632a", + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Appending to ./source_files/template_hamiltonian_simulation.py\n" + ] + } + ], "source": [ "%%writefile --append ./source_files/template_hamiltonian_simulation.py\n", "\n", @@ -281,7 +283,6 @@ }, { "cell_type": "markdown", - "id": "7f4bfe7f-e457-433a-9420-06a680323a33", "metadata": { "editable": true, "slideshow": { @@ -297,8 +298,7 @@ }, { "cell_type": "code", - "execution_count": 5, - "id": "932e4d9c-2493-4cf4-84c3-54e679814842", + "execution_count": 6, "metadata": { "editable": true, "slideshow": { @@ -323,7 +323,6 @@ }, { "cell_type": "markdown", - "id": "8d09b59d-8065-446c-966d-b67f49eba6ec", "metadata": { "editable": true, "slideshow": { @@ -341,8 +340,7 @@ }, { "cell_type": "code", - "execution_count": 6, - "id": "05926050-da5d-4c16-a0e7-ea5a875ea9b0", + "execution_count": 7, "metadata": { "editable": true, "slideshow": { @@ -362,6 +360,9 @@ "source": [ "%%writefile --append ./source_files/template_hamiltonian_simulation.py\n", "\n", + "import os\n", + "os.environ[\"NUMBA_CACHE_DIR\"] = \"/data\"\n", + "\n", "import datetime\n", "import quimb.tensor\n", "from scipy.optimize import OptimizeResult, minimize\n", @@ -474,7 +475,6 @@ }, { "cell_type": "markdown", - "id": "5ae54748-f104-4022-9383-f54570be833f", "metadata": { "editable": true, "slideshow": { @@ -490,8 +490,7 @@ }, { "cell_type": "code", - "execution_count": 7, - "id": "971344cd-455e-4017-9faa-ec66f6b58316", + "execution_count": 8, "metadata": { "editable": true, "slideshow": { @@ -529,7 +528,6 @@ }, { "cell_type": "markdown", - "id": "226d20da-391f-4131-8711-9cb7adad908b", "metadata": { "editable": true, "slideshow": { @@ -545,8 +543,7 @@ }, { "cell_type": "code", - "execution_count": 8, - "id": "8f6c84e3-3b18-4328-9f64-1a54a218946f", + "execution_count": 9, "metadata": { "editable": true, "slideshow": { @@ -577,7 +574,6 @@ }, { "cell_type": "markdown", - "id": "34751113-6ad1-43a6-b2ac-fac10fe02eae", "metadata": { "editable": true, "slideshow": { @@ -591,8 +587,7 @@ }, { "cell_type": "code", - "execution_count": 9, - "id": "18fa45c7-9f4e-4513-a9ff-2796aef65e69", + "execution_count": 10, "metadata": { "editable": true, "slideshow": { @@ -641,7 +636,6 @@ }, { "cell_type": "markdown", - "id": "1ea7d04b-2696-42bd-9247-d20d67d47af3", "metadata": { "editable": true, "slideshow": { @@ -657,8 +651,7 @@ }, { "cell_type": "code", - "execution_count": 10, - "id": "bc05e9a9-2b9e-4aef-b6d5-30858445d774", + "execution_count": 11, "metadata": { "editable": true, "slideshow": { @@ -683,7 +676,6 @@ }, { "cell_type": "markdown", - "id": "3eae249e-94a2-46db-942f-4935c8d70642", "metadata": { "editable": true, "slideshow": { @@ -703,8 +695,7 @@ }, { "cell_type": "code", - "execution_count": 11, - "id": "b3017f23-b5a9-40c1-80b9-d12232f723a8", + "execution_count": 12, "metadata": { "editable": true, "slideshow": { @@ -722,7 +713,6 @@ }, { "cell_type": "markdown", - "id": "faf301a3-32db-4a05-ae8b-45fc3caef05e", "metadata": { "editable": true, "slideshow": { @@ -736,8 +726,7 @@ }, { "cell_type": "code", - "execution_count": 29, - "id": "08693aba-eeaf-4f0c-b7d9-b9ce709a36b3", + "execution_count": 13, "metadata": { "editable": true, "slideshow": { @@ -752,8 +741,8 @@ " entrypoint=\"template_hamiltonian_simulation.py\",\n", " working_dir=\"./source_files/\",\n", " dependencies=[\n", - " \"qiskit-addon-utils==0.1.0\",\n", - " \"qiskit-addon-aqc-tensor[quimb-jax]==0.1.0\",\n", + " \"qiskit-addon-utils~=0.1.0\",\n", + " \"qiskit-addon-aqc-tensor[quimb-jax]~=0.1.2\",\n", " \"mergedeep==1.3.4\",\n", " ],\n", ")" @@ -761,8 +750,7 @@ }, { "cell_type": "code", - "execution_count": 30, - "id": "2407a391-4199-45d5-bf0f-4cd582860554", + "execution_count": 14, "metadata": { "editable": true, "slideshow": { @@ -777,7 +765,7 @@ "QiskitFunction(template_hamiltonian_simulation)" ] }, - "execution_count": 30, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -788,7 +776,6 @@ }, { "cell_type": "markdown", - "id": "2fff9c39-620c-4307-b0b0-8f29ff3454b3", "metadata": { "editable": true, "slideshow": { @@ -802,8 +789,7 @@ }, { "cell_type": "code", - "execution_count": 31, - "id": "10f9ee91-2539-4dc7-bd16-3c6b455865d8", + "execution_count": 15, "metadata": { "editable": true, "slideshow": { @@ -815,10 +801,13 @@ { "data": { "text/plain": [ - "[QiskitFunction(template_hamiltonian_simulation)]" + "[QiskitFunction(hamsim_template),\n", + " QiskitFunction(function_template_hamsim),\n", + " QiskitFunction(template_hamiltonian_simulation),\n", + " QiskitFunction(aqc_tutorial_L50)]" ] }, - "execution_count": 31, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -829,7 +818,6 @@ }, { "cell_type": "markdown", - "id": "c81a3d08-b43b-4160-b4c8-5b196ab0b204", "metadata": { "editable": true, "slideshow": { @@ -845,8 +833,7 @@ }, { "cell_type": "code", - "execution_count": 32, - "id": "8f06ef41-e551-484d-843c-23e9d3347757", + "execution_count": 16, "metadata": { "editable": true, "slideshow": { @@ -861,7 +848,6 @@ }, { "cell_type": "markdown", - "id": "d1f30310-ff43-42b5-9711-764d12deff09", "metadata": { "editable": true, "slideshow": { @@ -870,13 +856,12 @@ "tags": [] }, "source": [ - "Next, run the template with the domain-level inputs for Hamiltonian simulation. This example specifies simple four-qubit Hamiltonian and an observable." + "Next, run the template with the domain-level inputs for Hamiltonian simulation. This example specifies a 50-qubit XXZ model with random couplings, and an initial state and observable." ] }, { "cell_type": "code", - "execution_count": 33, - "id": "560eed26-78cb-4c48-9f35-7ac6e88aa648", + "execution_count": 17, "metadata": { "editable": true, "slideshow": { @@ -886,22 +871,49 @@ }, "outputs": [], "source": [ + "from itertools import chain\n", + "import numpy as np\n", "from qiskit.quantum_info import SparsePauliOp\n", "\n", + "L = 50\n", + "\n", + "# Generate the edge list for this spin-chain\n", + "edges = [(i, i + 1) for i in range(L - 1)]\n", + "# Generate an edge-coloring so we can make hw-efficient circuits\n", + "edges = edges[::2] + edges[1::2]\n", + "\n", + "# Generate random coefficients for our XXZ Hamiltonian\n", + "np.random.seed(0)\n", + "Js = np.random.rand(L - 1) + 0.5 * np.ones(L - 1)\n", + "\n", "hamiltonian = SparsePauliOp.from_sparse_list(\n", - " [(\"XX\", (i, i + 1), 1.0) for i in range(3)], num_qubits=4\n", - ") + SparsePauliOp.from_sparse_list(\n", - " [(\"YY\", (i, i + 1), 1.0) for i in range(3)], num_qubits=4\n", + " chain.from_iterable(\n", + " [[(\"XX\", (i, j), Js[i] / 2), (\"YY\", (i, j), Js[i] / 2), (\"ZZ\", (i, j), Js[i])] for i, j in edges]\n", + " ),\n", + " num_qubits=L,\n", ")\n", "observable = SparsePauliOp.from_sparse_list(\n", - " [(\"ZZ\", (1, 2), 1.0)], num_qubits=4\n", + " [(\"ZZ\", (L // 2 - 1, L // 2), 1.0)], num_qubits=L\n", ")" ] }, { "cell_type": "code", - "execution_count": 34, - "id": "f7f8cb70-8b81-4758-a105-0911faf0c9fa", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "from qiskit import QuantumCircuit\n", + "\n", + "initial_state = QuantumCircuit(L)\n", + "for i in range(L):\n", + " if i % 2:\n", + " initial_state.x(i)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, "metadata": { "editable": true, "slideshow": { @@ -914,13 +926,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "bd22fb47-ee0d-499f-8e85-2b55b526e23b\n" + "853b0edb-d63f-4629-be71-398b6dcf33cb\n" ] } ], "source": [ "job = template.run(\n", " dry_run=True,\n", + " initial_state=initial_state,\n", " hamiltonian=hamiltonian,\n", " observable=observable,\n", " backend_name=\"ibm_fez\",\n", @@ -937,7 +950,6 @@ }, { "cell_type": "markdown", - "id": "efbf4bda-e434-4b51-a47a-9cd8b220c903", "metadata": { "editable": true, "slideshow": { @@ -951,8 +963,7 @@ }, { "cell_type": "code", - "execution_count": null, - "id": "42fff535-84c7-4312-8fb9-e0f774a60405", + "execution_count": 20, "metadata": { "editable": true, "slideshow": { @@ -960,14 +971,24 @@ }, "tags": [] }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'QUEUED'" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "job.status()" ] }, { "cell_type": "markdown", - "id": "df723b45-5083-4ee4-9194-1d2822f26982", "metadata": {}, "source": [ "After the job is running, you can fetch logs created from the `print()` outputs. These can provide actionable information about the progress of the Hamiltonian simulation workflow. For example, the value of the objective function during the iterative component of AQC, or the two-qubit depth of the final ISA circuit intended for execution on hardware." @@ -975,8 +996,7 @@ }, { "cell_type": "code", - "execution_count": null, - "id": "37ffbb99-cfde-4e0b-90b5-2ae935897a15", + "execution_count": 21, "metadata": { "editable": true, "slideshow": { @@ -984,14 +1004,21 @@ }, "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No logs yet.\n" + ] + } + ], "source": [ - "job.logs()" + "print(job.logs())" ] }, { "cell_type": "markdown", - "id": "ee48f1c7-2239-4a85-b907-37e27d6a98fb", "metadata": { "editable": true, "slideshow": { @@ -1005,8 +1032,7 @@ }, { "cell_type": "code", - "execution_count": null, - "id": "adac32a9-e231-489a-a59e-2ecf449ea90a", + "execution_count": 22, "metadata": { "editable": true, "slideshow": { @@ -1014,14 +1040,239 @@ }, "tags": [] }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{'target_bond_dimension': 5,\n", + " 'num_aqc_parameters': 816,\n", + " 'aqc_starting_fidelity': 0.9914382555614002,\n", + " 'num_iterations': 72,\n", + " 'aqc_fidelity': 0.9998108844412502,\n", + " 'twoqubit_depth': 33}" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result = job.result()\n", + "\n", + "del result[\"aqc_final_parameters\"] # the list is too long to conveniently display here\n", + "result" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After the job completes, the entire logging output will be available." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-12-17 14:50:15,580\tINFO job_manager.py:531 -- Runtime env is setting up.\n", + "estimator_options = {\n", + " \"resilience\": {\n", + " \"measure_mitigation\": true,\n", + " \"zne_mitigation\": true,\n", + " \"zne\": {\n", + " \"amplifier\": \"gate_folding\",\n", + " \"noise_factors\": [\n", + " 1,\n", + " 2,\n", + " 3\n", + " ],\n", + " \"extrapolated_noise_factors\": [\n", + " 0.0,\n", + " 0.1,\n", + " 0.2,\n", + " 0.30000000000000004,\n", + " 0.4,\n", + " 0.5,\n", + " 0.6000000000000001,\n", + " 0.7000000000000001,\n", + " 0.8,\n", + " 0.9,\n", + " 1.0,\n", + " 1.1,\n", + " 1.2000000000000002,\n", + " 1.3,\n", + " 1.4000000000000001,\n", + " 1.5,\n", + " 1.6,\n", + " 1.7000000000000002,\n", + " 1.8,\n", + " 1.9000000000000001,\n", + " 2.0,\n", + " 2.1,\n", + " 2.2,\n", + " 2.3000000000000003,\n", + " 2.4000000000000004,\n", + " 2.5,\n", + " 2.6,\n", + " 2.7,\n", + " 2.8000000000000003,\n", + " 2.9000000000000004,\n", + " 3.0\n", + " ],\n", + " \"extrapolator\": [\n", + " \"exponential\",\n", + " \"linear\",\n", + " \"fallback\"\n", + " ]\n", + " },\n", + " \"measure_noise_learning\": {\n", + " \"num_randomizations\": 512,\n", + " \"shots_per_randomization\": 512\n", + " }\n", + " },\n", + " \"twirling\": {\n", + " \"enable_gates\": true,\n", + " \"enable_measure\": true,\n", + " \"num_randomizations\": 300,\n", + " \"shots_per_randomization\": 100,\n", + " \"strategy\": \"active\"\n", + " }\n", + "}\n", + "Hamiltonian: SparsePauliOp(['IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXX', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYY', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZ', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'XXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'YYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'ZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXI', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYI', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZI', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IYYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'],\n", + " coeffs=[0.52440675+0.j, 0.52440675+0.j, 1.0488135 +0.j, 0.55138169+0.j,\n", + " 0.55138169+0.j, 1.10276338+0.j, 0.4618274 +0.j, 0.4618274 +0.j,\n", + " 0.9236548 +0.j, 0.46879361+0.j, 0.46879361+0.j, 0.93758721+0.j,\n", + " 0.73183138+0.j, 0.73183138+0.j, 1.46366276+0.j, 0.64586252+0.j,\n", + " 0.64586252+0.j, 1.29172504+0.j, 0.53402228+0.j, 0.53402228+0.j,\n", + " 1.06804456+0.j, 0.28551803+0.j, 0.28551803+0.j, 0.57103606+0.j,\n", + " 0.2601092 +0.j, 0.2601092 +0.j, 0.5202184 +0.j, 0.63907838+0.j,\n", + " 0.63907838+0.j, 1.27815675+0.j, 0.73930917+0.j, 0.73930917+0.j,\n", + " 1.47861834+0.j, 0.48073968+0.j, 0.48073968+0.j, 0.96147936+0.j,\n", + " 0.30913721+0.j, 0.30913721+0.j, 0.61827443+0.j, 0.32167664+0.j,\n", + " 0.32167664+0.j, 0.64335329+0.j, 0.51092416+0.j, 0.51092416+0.j,\n", + " 1.02184832+0.j, 0.38227781+0.j, 0.38227781+0.j, 0.76455561+0.j,\n", + " 0.47807517+0.j, 0.47807517+0.j, 0.95615033+0.j, 0.2593949 +0.j,\n", + " 0.2593949 +0.j, 0.5187898 +0.j, 0.55604786+0.j, 0.55604786+0.j,\n", + " 1.11209572+0.j, 0.72187404+0.j, 0.72187404+0.j, 1.44374808+0.j,\n", + " 0.42975395+0.j, 0.42975395+0.j, 0.8595079 +0.j, 0.5988156 +0.j,\n", + " 0.5988156 +0.j, 1.1976312 +0.j, 0.58338336+0.j, 0.58338336+0.j,\n", + " 1.16676672+0.j, 0.35519128+0.j, 0.35519128+0.j, 0.71038256+0.j,\n", + " 0.40771418+0.j, 0.40771418+0.j, 0.81542835+0.j, 0.60759468+0.j,\n", + " 0.60759468+0.j, 1.21518937+0.j, 0.52244159+0.j, 0.52244159+0.j,\n", + " 1.04488318+0.j, 0.57294706+0.j, 0.57294706+0.j, 1.14589411+0.j,\n", + " 0.6958865 +0.j, 0.6958865 +0.j, 1.391773 +0.j, 0.44172076+0.j,\n", + " 0.44172076+0.j, 0.88344152+0.j, 0.51444746+0.j, 0.51444746+0.j,\n", + " 1.02889492+0.j, 0.71279832+0.j, 0.71279832+0.j, 1.42559664+0.j,\n", + " 0.29356465+0.j, 0.29356465+0.j, 0.5871293 +0.j, 0.66630992+0.j,\n", + " 0.66630992+0.j, 1.33261985+0.j, 0.68500607+0.j, 0.68500607+0.j,\n", + " 1.37001215+0.j, 0.64957928+0.j, 0.64957928+0.j, 1.29915856+0.j,\n", + " 0.64026459+0.j, 0.64026459+0.j, 1.28052918+0.j, 0.56996051+0.j,\n", + " 0.56996051+0.j, 1.13992102+0.j, 0.72233446+0.j, 0.72233446+0.j,\n", + " 1.44466892+0.j, 0.45733097+0.j, 0.45733097+0.j, 0.91466194+0.j,\n", + " 0.63711684+0.j, 0.63711684+0.j, 1.27423369+0.j, 0.53421697+0.j,\n", + " 0.53421697+0.j, 1.06843395+0.j, 0.55881775+0.j, 0.55881775+0.j,\n", + " 1.1176355 +0.j, 0.558467 +0.j, 0.558467 +0.j, 1.116934 +0.j,\n", + " 0.59091015+0.j, 0.59091015+0.j, 1.1818203 +0.j, 0.46851598+0.j,\n", + " 0.46851598+0.j, 0.93703195+0.j, 0.28011274+0.j, 0.28011274+0.j,\n", + " 0.56022547+0.j, 0.58531893+0.j, 0.58531893+0.j, 1.17063787+0.j,\n", + " 0.31446315+0.j, 0.31446315+0.j, 0.6289263 +0.j])\n", + "Observable: SparsePauliOp(['IIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIII'],\n", + " coeffs=[1.+0.j])\n", + "Target MPS maximum bond dimension: 5\n", + "Number of AQC parameters: 816\n", + "Starting fidelity of AQC portion: 0.9914382555614002\n", + "2024-12-17 14:52:23.400028 Intermediate result: Fidelity 0.99764093\n", + "2024-12-17 14:52:23.429669 Intermediate result: Fidelity 0.99788003\n", + "2024-12-17 14:52:23.459674 Intermediate result: Fidelity 0.99795970\n", + "2024-12-17 14:52:23.489666 Intermediate result: Fidelity 0.99799067\n", + "2024-12-17 14:52:23.518545 Intermediate result: Fidelity 0.99803401\n", + "2024-12-17 14:52:23.546952 Intermediate result: Fidelity 0.99809821\n", + "2024-12-17 14:52:23.575271 Intermediate result: Fidelity 0.99824660\n", + "2024-12-17 14:52:23.604049 Intermediate result: Fidelity 0.99845326\n", + "2024-12-17 14:52:23.632709 Intermediate result: Fidelity 0.99870497\n", + "2024-12-17 14:52:23.660527 Intermediate result: Fidelity 0.99891442\n", + "2024-12-17 14:52:23.688273 Intermediate result: Fidelity 0.99904488\n", + "2024-12-17 14:52:23.716105 Intermediate result: Fidelity 0.99914438\n", + "2024-12-17 14:52:23.744336 Intermediate result: Fidelity 0.99922827\n", + "2024-12-17 14:52:23.773399 Intermediate result: Fidelity 0.99929071\n", + "2024-12-17 14:52:23.801482 Intermediate result: Fidelity 0.99932432\n", + "2024-12-17 14:52:23.830466 Intermediate result: Fidelity 0.99936460\n", + "2024-12-17 14:52:23.860738 Intermediate result: Fidelity 0.99938891\n", + "2024-12-17 14:52:23.889958 Intermediate result: Fidelity 0.99940607\n", + "2024-12-17 14:52:23.918703 Intermediate result: Fidelity 0.99941965\n", + "2024-12-17 14:52:23.949744 Intermediate result: Fidelity 0.99944337\n", + "2024-12-17 14:52:23.980871 Intermediate result: Fidelity 0.99946875\n", + "2024-12-17 14:52:24.012124 Intermediate result: Fidelity 0.99949009\n", + "2024-12-17 14:52:24.044359 Intermediate result: Fidelity 0.99952191\n", + "2024-12-17 14:52:24.075840 Intermediate result: Fidelity 0.99953669\n", + "2024-12-17 14:52:24.106303 Intermediate result: Fidelity 0.99955242\n", + "2024-12-17 14:52:24.139329 Intermediate result: Fidelity 0.99958412\n", + "2024-12-17 14:52:24.169725 Intermediate result: Fidelity 0.99960176\n", + "2024-12-17 14:52:24.198749 Intermediate result: Fidelity 0.99961606\n", + "2024-12-17 14:52:24.227874 Intermediate result: Fidelity 0.99963811\n", + "2024-12-17 14:52:24.256818 Intermediate result: Fidelity 0.99964383\n", + "2024-12-17 14:52:24.285889 Intermediate result: Fidelity 0.99964717\n", + "2024-12-17 14:52:24.315228 Intermediate result: Fidelity 0.99966064\n", + "2024-12-17 14:52:24.345322 Intermediate result: Fidelity 0.99966517\n", + "2024-12-17 14:52:24.374921 Intermediate result: Fidelity 0.99967089\n", + "2024-12-17 14:52:24.404309 Intermediate result: Fidelity 0.99968305\n", + "2024-12-17 14:52:24.432664 Intermediate result: Fidelity 0.99968889\n", + "2024-12-17 14:52:24.461639 Intermediate result: Fidelity 0.99969997\n", + "2024-12-17 14:52:24.491244 Intermediate result: Fidelity 0.99971666\n", + "2024-12-17 14:52:24.520354 Intermediate result: Fidelity 0.99972441\n", + "2024-12-17 14:52:24.549965 Intermediate result: Fidelity 0.99973561\n", + "2024-12-17 14:52:24.583464 Intermediate result: Fidelity 0.99973811\n", + "2024-12-17 14:52:24.617537 Intermediate result: Fidelity 0.99974074\n", + "2024-12-17 14:52:24.652247 Intermediate result: Fidelity 0.99974467\n", + "2024-12-17 14:52:24.686831 Intermediate result: Fidelity 0.99974991\n", + "2024-12-17 14:52:24.725476 Intermediate result: Fidelity 0.99975230\n", + "2024-12-17 14:52:24.764637 Intermediate result: Fidelity 0.99975373\n", + "2024-12-17 14:52:24.802499 Intermediate result: Fidelity 0.99975552\n", + "2024-12-17 14:52:24.839960 Intermediate result: Fidelity 0.99975885\n", + "2024-12-17 14:52:24.877472 Intermediate result: Fidelity 0.99976469\n", + "2024-12-17 14:52:24.916233 Intermediate result: Fidelity 0.99976517\n", + "2024-12-17 14:52:24.993750 Intermediate result: Fidelity 0.99976875\n", + "2024-12-17 14:52:25.034953 Intermediate result: Fidelity 0.99976887\n", + "2024-12-17 14:52:25.076197 Intermediate result: Fidelity 0.99977244\n", + "2024-12-17 14:52:25.112340 Intermediate result: Fidelity 0.99977638\n", + "2024-12-17 14:52:25.149947 Intermediate result: Fidelity 0.99977828\n", + "2024-12-17 14:52:25.190049 Intermediate result: Fidelity 0.99978174\n", + "2024-12-17 14:52:25.310903 Intermediate result: Fidelity 0.99978222\n", + "2024-12-17 14:52:25.347512 Intermediate result: Fidelity 0.99978508\n", + "2024-12-17 14:52:25.385201 Intermediate result: Fidelity 0.99978543\n", + "2024-12-17 14:52:25.457436 Intermediate result: Fidelity 0.99978770\n", + "2024-12-17 14:52:25.497133 Intermediate result: Fidelity 0.99978818\n", + "2024-12-17 14:52:25.541179 Intermediate result: Fidelity 0.99978913\n", + "2024-12-17 14:52:25.584791 Intermediate result: Fidelity 0.99978937\n", + "2024-12-17 14:52:25.621484 Intermediate result: Fidelity 0.99979068\n", + "2024-12-17 14:52:25.655847 Intermediate result: Fidelity 0.99979211\n", + "2024-12-17 14:52:25.691710 Intermediate result: Fidelity 0.99979700\n", + "2024-12-17 14:52:25.767711 Intermediate result: Fidelity 0.99979759\n", + "2024-12-17 14:52:25.804517 Intermediate result: Fidelity 0.99979807\n", + "2024-12-17 14:52:25.839394 Intermediate result: Fidelity 0.99980236\n", + "2024-12-17 14:52:25.874438 Intermediate result: Fidelity 0.99980296\n", + "2024-12-17 14:52:25.909900 Intermediate result: Fidelity 0.99980320\n", + "2024-12-17 14:52:26.713044 Intermediate result: Fidelity 0.99980320\n", + "Done after 72 iterations.\n", + "Fidelity of AQC portion: 0.9998108844412502\n", + "ISA circuit two-qubit depth: 33\n", + "Exiting before hardware execution since `dry_run` is True.\n", + "\n" + ] + } + ], "source": [ - "job.result()" + "print(job.logs())" ] }, { "cell_type": "markdown", - "id": "98def6cc-186e-4b4a-982c-8d87e8fd6e09", "metadata": { "editable": true, "slideshow": { @@ -1034,15 +1285,14 @@ "\n", "\n", "\n", - "For a deeper dive into the AQC-Tensor Qiskit addon, check out the [Improved Trotterized Time Evolution with Approximate Quantum Compilation](https://learning.quantum.ibm.com/tutorial/improved-trotterized-time-evolution-with-approximate-quantum-compilation) tutorial.\n", + "For a deeper dive into the AQC-Tensor Qiskit addon, check out the [Improved Trotterized Time Evolution with Approximate Quantum Compilation](https://learning.quantum.ibm.com/tutorial/improved-trotterized-time-evolution-with-approximate-quantum-compilation) tutorial or the [qiskit-addon-aqc-tensor repository](https://github.com/Qiskit/qiskit-addon-aqc-tensor).\n", "\n", "" ] }, { "cell_type": "code", - "execution_count": null, - "id": "c0984a9e-15e9-44ca-b41e-a2116fab00b0", + "execution_count": 24, "metadata": { "editable": true, "slideshow": { @@ -1064,7 +1314,7 @@ "metadata": { "description": "How to create a parallel transpilation program and deploy it to IBM Quantum Platform to use as a reusable remote service.", "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -1078,7 +1328,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3" + "version": "3.12.3" }, "title": "Build a Qiskit Function template for Hamiltonian simulation" },