forked from kschwethelm/HyperbolicCV
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
177 lines (133 loc) · 4.86 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import torch
import matplotlib as mpl
import matplotlib.pyplot as plt
from lib.geoopt.manifolds.lorentz.math import lorentz_to_poincare, poincare_to_lorentz
import umap
#mpl.rcParams.update({
# 'text.usetex' : True ,
# "font.family": "serif",
# 'font.size': 20
#})
@torch.no_grad()
def visualize_reconstructions(model, dataloader, device, num_imgs: int = 5):
""" Visualizes image reconstructions of a VAE-model.
Dataloader has to have a batch_size > num_imgs!
Returns a matplotlib.pyplot figure.
"""
model.eval()
model.to(device)
x, _ = next(iter(dataloader))
x = x[:num_imgs] # Select first images
x = x.to(device)
x_hat = model.module.reconstruct(x)
x = x.cpu().detach().numpy()
x_hat = x_hat.cpu().detach().numpy()
fig = plt.figure()
for i in range(num_imgs):
# Plot input img
ax = fig.add_subplot(2, num_imgs,i+1, xticks=[], yticks=[])
plt.imshow(x[i].transpose(1,2,0), cmap='gray')
# Plot reconstructed img
ax = fig.add_subplot(2, num_imgs,(i+1)+num_imgs, xticks=[], yticks=[])
plt.imshow(x_hat[i].transpose(1,2,0), cmap='gray')
fig.tight_layout()
plt.subplots_adjust(wspace=0, hspace=0)
return fig
@torch.no_grad()
def visualize_generations(model, device, num_imgs_per_axis: int = 5):
""" Visualizes image generations of a VAE-model.
Returns a matplotlib.pyplot figure.
"""
model.eval()
model.to(device)
x_gen = model.module.generate_random(num_imgs_per_axis**2, device)
x_gen = x_gen.cpu().detach().numpy()
fig = plt.figure(figsize=(10,10))
for i in range(num_imgs_per_axis**2):
# Plot input img
ax = fig.add_subplot(num_imgs_per_axis, num_imgs_per_axis, i+1, xticks=[], yticks=[])
plt.imshow(x_gen[i].transpose(1,2,0), cmap='gray')
fig.tight_layout()
plt.subplots_adjust(wspace=0, hspace=0)
return fig
@torch.no_grad()
def visualize_hyperbolic(data, device, manifold = None, poincare=False, labels=None):
""" Plots hyperbolic data on Poincaré ball and tangent space
Note: This function only supports curvature k=1.
"""
if labels is not None:
labels = labels.cpu().numpy()
fig = plt.figure(figsize=(14,7))
# 2D embeddings
if (data.shape[-1]==2 and poincare) or (data.shape[-1]==3 and not poincare):
if poincare:
data_P = data.cpu()
else:
data_P = lorentz_to_poincare(data, k=manifold.k).cpu()
# Dimensionality reduction to 2D
else:
if poincare:
data = poincare_to_lorentz(data, manifold.k)
reducer = umap.UMAP(output_metric='hyperboloid')
data = reducer.fit_transform(data.cpu().numpy())
data = manifold.add_time(torch.tensor(data).to(device))
data_P = lorentz_to_poincare(data, k=manifold.k).cpu()
ax = fig.add_subplot(1,2,1)
plt.scatter(data_P[:,0], data_P[:,1], c=labels, s=1)
# Draw Poincaré boundary
boundary=plt.Circle((0,0),1, color='k', fill=False)
ax.add_patch(boundary)
ax.set_xlim([-1, 1])
ax.set_ylim([-1, 1])
ax.set_aspect('equal', adjustable='box')
plt.colorbar()
plt.xlabel("$z_0$")
plt.ylabel("$z_1$")
ax.set_title("Poincaré Ball")
# Plot hyperbolic embeddings in tangent space of the origin
if poincare:
z_all_T = (manifold.logmap0(data_P.to(device))).detach().cpu()
else:
z_all_T = (manifold.logmap0(data)).detach().cpu()
z_all_T = z_all_T[..., 1:]
ax = fig.add_subplot(1,2,2)
plt.scatter(z_all_T[:,0], z_all_T[:,1], c=labels, s=1)
ax.set_aspect('equal', adjustable='box')
plt.colorbar()
plt.xlabel("$z_0$")
plt.ylabel("$z_1$")
ax.set_title("Tangent Space")
return fig
@torch.no_grad()
def visualize_embeddings(model, dataloader, device, manifold = None, poincare=False):
""" Visualizes embeddings of a model.
Umap only supports k=1?
"""
model.eval()
z_all = []
labels = []
model.to(device)
for x, y in dataloader:
x = x.to(device)
z = model.module.embed(x)
z_all.extend(z.cpu().detach().numpy().tolist())
labels.extend(y.numpy().tolist())
z_all = torch.tensor(z_all, device=device) # gpu or cpu
labels = torch.tensor(labels) # cpu
if manifold is not None:
fig = visualize_hyperbolic(z_all, device, manifold, poincare, labels)
else:
# Plot Euclidean embeddings
if z_all.shape[-1]>2:
reducer = umap.UMAP()
z_all = reducer.fit_transform(z_all.cpu().numpy())
else:
z_all = z_all.detach().cpu()
fig = plt.figure(figsize=(14, 7))
ax = fig.add_subplot(1,2,1)
plt.scatter(z_all[:,0], z_all[:,1], c=labels, s=1)
ax.set_aspect('equal', adjustable='box')
plt.colorbar()
plt.xlabel("$z_0$")
plt.ylabel("$z_1$")
return fig