forked from divelab/AIRS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_experiment.sh
201 lines (180 loc) · 4.52 KB
/
run_experiment.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# number of replicates of experiments
n_exp=1 # TODO
# config data
path=./data/
V1e4=ns_V1e-4_N10000_T30.mat
swe=2D_rdb_NA_NA.h5
cos=ns_V0.0001_N1200_T30_cos4.mat
swearena=ShallowWater2D
# data with T (number of steps into the future to predict)
declare -A datas=(
["$V1e4"]=20
["$swe"]=24
["$cos"]=10
["$swearena"]=9
)
# data with superres dataset
declare -A super_datas=(
["$V1e4"]=ns_data_V1e-4_N20_T50_R256test.mat
["$cos"]=ns_V0.0001_N1200_T30_cos4_super.mat
)
data_names=( # TODO before running: uncommented datasets will be used for training
#$V1e4 # Navier Stokes
#$cos # Navier Stokes with symmetric forcing
#$swe # Shallow water equations (PDE Bench)
$swearena # Shallow water equation (PDE Arena)
)
ntrain=1000
nvalid=100
ntest=100
# model config; model with GPU
declare -A models=( # TODO before running: uncommented models will be trained on the assigned GPU
#["FNO2d"]=0
#["FNO2d_aug"]=3
#["FNO2d_aug-rf"]=6
["GFNO2d_p4"]=0
#["GFNO2d_p4m"]=3
#["GFNO2d_p4_steer"]=6
#["GFNO2d_p4m_steer"]=3
#["Ghybrid2d_p4"]=6
#["Ghybrid2d_p4m"]=7
#["radialNO2d_p4"]=9
#["radialNO2d_p4m"]=4
#["Unet_Rot_M2d"]=7
#["Unet_Rot2d"]=7
#["FNO3d"]=0
#["FNO3d_aug"]=3
#["FNO3d_aug-rf"]=5
#["GFNO3d_p4"]=0
#["GFNO3d_p4m"]=0
#["radialNO3d_p4"]=7
#["radialNO3d_p4m"]=4
#["Unet_Rot_3D"]=3
)
declare -A widths=( # number of channels
["FNO2d"]=20
["FNO2d_aug"]=20
["FNO2d_aug-rf"]=20
["GFNO2d_p4"]=10
["GFNO2d_p4m"]=7
["GFNO2d_p4_steer"]=15
["GFNO2d_p4m_steer"]=11
["Ghybrid2d_p4"]=20
["Ghybrid2d_p4m"]=20
["radialNO2d_p4"]=40
["radialNO2d_p4m"]=50
["Unet_Rot_M2d"]=32
["FNO3d"]=20
["FNO3d_aug"]=20
["FNO3d_aug-rf"]=20
["GFNO3d_p4"]=11
["GFNO3d_p4m"]=7
["radialNO3d_p4"]=60
["radialNO3d_p4m"]=80
["Unet_Rot_3D"]=32
)
suffix="" # TODO
# loop over model types
for model in "${!models[@]}"; do
# model config
gpu="${models[$model]}"
epochs=100 # markov/ oneshot & recurrent (100 / 500)
strategy=teacher_forcing # TODO markov/ recurrent /teacher_forcing
modes=12 # 3d/ 2d data (8 / 12)
batch_size=20 # 3d/ 2d data (1 / 20)
if [[ $model == *"3"* ]]; then # 3d/ 2d data
epochs=500
strategy=oneshot
modes=8
batch_size=10
fi
width="${widths[$model]}"
(
# loop over datasets
for data in "${data_names[@]}"; do
# data config
T="${datas[$data]}"
data_name=$data
if [ "$data" = "$swe" ] && [ "$ntrain" = 1000 ]; then
ntrain=800
elif [ "$data" = "$swearena" ]; then
modes=32
if [[ $model == *"3"* ]]; then
modes=22
fi
ntrain=5600
nvalid=1120
ntest=1120
if [[ "$model" = "radialNO2d_p4m" ]]; then
width=55
elif [[ "$model" = "Unet_Rot_M2d" ]]; then
width=44
elif [[ "$model" = "Unet_Rot_3D" ]]; then
width=90
elif [[ "$model" = "GFNO3d_p4m" ]]; then
width=8
fi
fi
model_name="$model"
if [[ "$model_name" =~ rf ]]; then
model_name="${model_name::-3}"
fi
if [[ "$model_name" =~ Ghybrid ]]; then
n_equiv=3
model="$model_name$n_equiv"
fi
# perform replicates
for rep in $(seq 1 $n_exp); do
args=(
--seed="$rep"
--data_path="$path$data"
--results_path="./results/$data_name/$model/" # TODO
--strategy="$strategy"
--T="$T"
--ntrain="$ntrain"
--nvalid="$nvalid"
--ntest="$ntest"
--model_type="$model_name"
--modes="$modes"
--width="$width"
--batch_size="$batch_size"
--epochs="$epochs"
--suffix="seed$rep$suffix"
--txt_suffix=$data_name\_$model\_seed$rep
--learning_rate=1e-3
--early_stopping=100
)
if [ "$data" = "$swearena" ]; then
args+=( --time_pad )
else
args+=( --super )
if [ "$data" = "$V1e4" ] || [ "$data" = "$cos" ]; then
super_data="${super_datas[$data]}"
args+=( --super_path="$path$super_data" )
fi
fi
if [[ "$model" =~ rf ]]; then
args+=( --reflection )
fi
if [[ "$model" =~ Ghybrid ]]; then
args+=( --n_equiv="$n_equiv" )
if [[ "$model" =~ p4m ]]; then
args+=( --Gwidth=7 )
else
args+=( --Gwidth=10 )
fi
fi
# if [ $gpu = 8 ]; then
# ((gpu++))
# fi
echo "${args[@]}"
printf "\n\n"
printf "\n\nTraining $model$width with $strategy strategy on GPU $gpu with data $data, T=$T (trial $rep, ntrain $ntrain)\n\n"
# CUDA_VISIBLE_DEVICES=$gpu python experiments.py "${args[@]}" & # --verbose & # TODO: uncomment to run
# gpu=$(( 1 * rep + 7 ))
((gpu++))
sleep 4s
done
done
) &
done