layout | background-class | body-class | category | title | summary | image | author | tags | github-link | github-id | featured_image_1 | featured_image_2 | accelerator | demo-model-link | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
hub_detail |
hub-background |
hub |
researchers |
HybridNets |
HybridNets - End2End Perception Network |
hybridnets.jpg |
Dat Vu Thanh |
|
datvuthanh/HybridNets |
no-image |
no-image |
cuda-optional |
Start from a Python>=3.7 environment with PyTorch>=1.10 installed. To install PyTorch see https://pytorch.org/get-started/locally/. To install HybridNets dependencies:
pip install -qr https://raw.githubusercontent.com/datvuthanh/HybridNets/main/requirements.txt # install dependencies
HybridNets is an end2end perception network for multi-tasks. Our work focused on traffic object detection, drivable area segmentation and lane detection. HybridNets can run real-time on embedded systems, and obtains SOTA Object Detection, Lane Detection on BDD100K Dataset.
Model | Recall (%) | [email protected] (%) |
---|---|---|
MultiNet |
81.3 | 60.2 |
DLT-Net |
89.4 | 68.4 |
Faster R-CNN |
77.2 | 55.6 |
YOLOv5s |
86.8 | 77.2 |
YOLOP |
89.2 | 76.5 |
HybridNets |
92.8 | 77.3 |
Model | Drivable mIoU (%) |
---|---|
MultiNet |
71.6 |
DLT-Net |
71.3 |
PSPNet |
89.6 |
YOLOP |
91.5 |
HybridNets |
90.5 |
Model | Accuracy (%) | Lane Line IoU (%) |
---|---|---|
Enet |
34.12 | 14.64 |
SCNN |
35.79 | 15.84 |
Enet-SAD |
36.56 | 16.02 |
YOLOP |
70.5 | 26.2 |
HybridNets |
85.4 | 31.6 |
This example loads the pretrained HybridNets model and passes an image for inference.
import torch
# load model
model = torch.hub.load('datvuthanh/hybridnets', 'hybridnets', pretrained=True)
#inference
img = torch.randn(1,3,640,384)
features, regression, classification, anchors, segmentation = model(img)
If you find our paper and code useful for your research, please consider giving a star and citation:
@misc{vu2022hybridnets,
title={HybridNets: End-to-End Perception Network},
author={Dat Vu and Bao Ngo and Hung Phan},
year={2022},
eprint={2203.09035},
archivePrefix={arXiv},
primaryClass={cs.CV}
}