forked from fani-lab/LADy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlda.py
81 lines (67 loc) · 4.26 KB
/
lda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import gensim, logging, pandas as pd
from gensim.models.coherencemodel import CoherenceModel
from .mdl import AbstractAspectModel
# @inproceedings{DBLP:conf/naacl/BrodyE10,
# author = {Samuel Brody and Noemie Elhadad},
# title = {An Unsupervised Aspect-Sentiment Model for Online Reviews},
# booktitle = {Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics, Proceedings, June 2-4, 2010, Los Angeles, California, {USA}},
# pages = {804--812},
# publisher = {The Association for Computational Linguistics},
# year = {2010},
# url = {https://aclanthology.org/N10-1122/},
# biburl = {https://dblp.org/rec/conf/naacl/BrodyE10.bib},
# }
class Lda(AbstractAspectModel):
def __init__(self, naspects, nwords): super().__init__(naspects, nwords)
def load(self, path):
self.mdl = gensim.models.LdaModel.load(f'{path}model')
assert self.mdl.num_topics == self.naspects
self.dict = gensim.corpora.Dictionary.load(f'{path}model.dict')
self.cas = pd.read_pickle(f'{path}model.perf.cas')
self.perplexity = pd.read_pickle(f'{path}model.perf.perplexity')
def train(self, reviews_train, reviews_valid, settings, doctype, no_extremes, output):
reviews_, self.dict = super(Lda, self).preprocess(doctype, reviews_train, no_extremes)
corpus = [self.dict.doc2bow(doc) for doc in reviews_]
logging.getLogger().handlers.clear()
logging.basicConfig(filename=f'{output}model.train.log', format='%(asctime)s:%(levelname)s:%(message)s', level=logging.NOTSET)
# callback functions cannot be applied in parallel lda, only for LdaModel()
# perplexity_logger = PerplexityMetric(corpus=corpus, logger='shell')
# convergence_logger = ConvergenceMetric(logger='shell')
# coherence_cv_logger = CoherenceMetric(corpus=corpus, logger='shell', coherence='c_v', texts=reviews_)
# self.model = gensim.models.wrappers.LdaMallet(mallet, corpus, num_topics=self.naspects, id2word=self.dict, workers=cores, iterations=iter, callback=)
# alpha=symetric, i.e., 1/#topics, beta=0.01
self.mdl = gensim.models.ldamulticore.LdaMulticore(corpus, num_topics=self.naspects, id2word=self.dict, **settings)
# TODO: quality diagram ==> https://www.meganstodel.com/posts/callbacks/
aspects, probs = self.get_aspects_words(self.nwords)
# https://stackoverflow.com/questions/50607378/negative-values-evaluate-gensim-lda-with-topic-coherence
# umass: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://aclanthology.org/D11-1024.pdf
# [-inf, 0]: close to zero, the better
self.cas = CoherenceModel(model=self.mdl, topics=aspects, corpus=corpus, dictionary=self.dict, coherence='u_mass', texts=reviews_).get_coherence_per_topic()
self.perplexity = self.mdl.log_perplexity(corpus)
self.dict.save(f'{output}model.dict')
self.mdl.save(f'{output}model')
pd.to_pickle(self.cas, f'{output}model.perf.cas')
pd.to_pickle(self.perplexity, f'{output}model.perf.perplexity')
def get_aspects_words(self, nwords):
# self.model.get_topics() does not have words
# self.model.show_topics() and model.show_topic()
words = []
probs = []
for idx, aspect in self.mdl.print_topics(-1, num_words=nwords):
words.append([]); probs.append([])
words_probs = aspect.split('+')
for word_prob in words_probs:
if any(char.isdigit() for char in word_prob):
probs[-1].append(word_prob.split('*')[0])
words[-1].append(word_prob.split('*')[1].split('"')[1])
else:
probs[-1].append(0.0)
words[-1].append(word_prob.replace('"', ''))
return words, probs
def get_aspect_words(self, aspect_id, nwords): return self.mdl.show_topic(aspect_id, nwords)
def infer(self, review, doctype):
review_aspects = []
review_, _ = super(Lda, self).preprocess(doctype, [review])
for r in review_:
review_aspects.append(self.mdl.get_document_topics(self.dict.doc2bow(r), minimum_probability=self.mdl.minimum_probability))
return review_aspects