-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreal_time.py
58 lines (52 loc) · 1.76 KB
/
real_time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
### Run the OpenBCI GUI
### Set Networking mode to LSL, FFT data type, and # Chan to 125
### Thanks to @Sentdex - Nov 2019
from pylsl import StreamInlet, resolve_stream
import numpy as np
import mindPred
import sys
def connect_to_stream(model_path="./acc100.00.pt"):
# first resolve an EEG stream on the lab network
print(model_path)
print("looking for an EEG stream...")
streams = resolve_stream('type', 'EEG')
# create a new inlet to read from the stream
inlet = StreamInlet(streams[0])
data = []
wait = 3 # wait 3 seconds before recording
total = 100
count = 0
model = mindPred.init(model_path)
while True:
channel_data = {}
for i in range(8): # each of the 16 channels here
sample, timestamp = inlet.pull_sample()
if i not in channel_data:
channel_data[i] = sample
else:
channel_data[i].append(sample)
tmp = []
for i in range(8):
tmp.append(np.array(channel_data[i][:60]))
arr = np.array(tmp)
if (np.shape(data)[0] == 25):
if (count < wait):
print(count, np.shape(data))
data = []
elif (count >= wait + total):
break
else:
# stamp = time.time() * 10
# stamp = int(stamp - (stamp % 1))
# name = "data" + str(stamp)
# np.save(name, data)
# print(name, np.shape(data))
mindPred.real_time_prediction(model, data)
data = []
count += 1
data.append(arr)
if __name__ == "__main__":
if (len(sys.argv) == 1):
connect_to_stream()
elif (len(sys.argv) == 2):
connect_to_stream(sys.argv[1])