-
Notifications
You must be signed in to change notification settings - Fork 0
/
AmericioOut.tex
63 lines (59 loc) · 2.13 KB
/
AmericioOut.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
\hypertarget{report-picchi-secondari-americio}{%
\section{Report picchi secondari
americio}\label{report-picchi-secondari-americio}}
\hypertarget{fit-della-tripla-crystalball}{%
\section{Fit della tripla
Crystalball}\label{fit-della-tripla-crystalball}}
Il fit ha forma:
\[d*CB(x, \mu = a, \sigma = g, alpha = h, n = i) + e*CB(x, \mu = b, \sigma = g, alpha = h, n = i) + f*CB(x, \mu = c, \sigma = g, alpha = h, n = i)\]
\$a = 1418.93439 \pm 0.04406 \$
\$b = 1377.50661 \pm 0.14041 \$
\$c =1322.33680 \pm 0.74677 \$
\$d = 16235.38773 \pm 109.76850 \$
\$e =2282.03657 \pm 41.10116 \$
\$f = 154.76748 \pm 13.97214 \$
\$g = 7.08567\pm 0.03431 \$
\$h = 1.64636 \pm 0.01769 \$
\$i = 1.40862 \pm 0.01699 \$
\begin{verbatim}
[[Fit Statistics]]
# fitting method = leastsq
# function evals = 225
# data points = 2048
# variables = 9
chi-square = 16679.6008
reduced chi-square = 8.18028482
Akaike info crit = 4313.31700
Bayesian info crit = 4363.93857
[[Variables]]
a: 1418.93439 +/- 0.04406211 (0.00%) (init = 1430)
b: 1377.50661 +/- 0.14040946 (0.01%) (init = 1385)
c: 1322.33680 +/- 0.74676992 (0.06%) (init = 1330)
d: 16235.3877 +/- 109.768505 (0.68%) (init = 50000)
e: 2282.03657 +/- 41.1011639 (1.80%) (init = 10000)
f: 154.767480 +/- 13.9721373 (9.03%) (init = 1000)
g: 7.08567292 +/- 0.03430547 (0.48%) (init = 5)
h: 1.64635796 +/- 0.01768598 (1.07%) (init = 2)
i: 1.40861950 +/- 0.01699313 (1.21%) (init = 1)
[[Correlations]] (unreported correlations are < 0.100)
C(h, i) = -0.871
C(d, g) = -0.607
C(a, g) = -0.378
C(g, h) = 0.373
C(e, h) = 0.340
C(a, h) = -0.287
C(g, i) = -0.253
C(a, i) = 0.216
C(e, i) = -0.211
C(f, h) = 0.209
C(a, d) = 0.188
C(b, e) = 0.115
C(c, f) = 0.106
C(b, h) = 0.101
\end{verbatim}
Si scrivono i valori degli integrali nella forma \((\mu, amp)\)
I1:
(A, D) I1 = (3.294+/-0.017)e+05 BR1: 0.8695+/-0.0022
(B, E) I2 = (4.63+/-0.08)e+04 BR2: 0.1222+/-0.0020
(C, F) I3 = (3.14+/-0.28)e+03 BR3: 0.0083+/-0.0007
Totale = (3.788+/-0.018)e+05 BRtot: 1.000000+/-0.000000