-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsac.py
605 lines (525 loc) · 27.8 KB
/
sac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
import copy
import datetime
import json
import os
import pickle
import shutil
import time
import numpy as np
import torch
import torch.nn.functional as F
from tensorboardX import SummaryWriter
from torch.optim import Adam
from model import GaussianPolicyCNN, QNetworkCNN, DeterministicPolicyCNN
from model import GaussianPolicyNN, QNetworkNN, DeterministicPolicyNN
from replay_memory import ReplayMemory
from state_buffer import StateBuffer
from utils import soft_update, hard_update
class SAC(object):
"""
This is the class of SAC Cozmo. It can be used as a starting draft to build your own implementation of SAC on Cozmo.
The main function to modify as desire is the `train` one.
"""
# TODO: complete documentation of SAC
def __init__(self, num_inputs, action_space, env, args, folder, logger):
"""
This is the initialization function of the class. The function receives as input a lot of parameters
:param num_inputs:
:type num_inputs:
:param action_space:
:type action_space:
:param env:
:type env:
:param args:
:type args:
:param folder:
:type folder:
:param logger:
:type logger:
"""
self.env = env
self.seed = args.seed
self.device = torch.device("cuda" if args.cuda else "cpu")
self.gamma = args.gamma
self.tau = args.tau
self.alpha = args.alpha
self.learning_rate = args.lr
self.policy_type = args.policy
self.target_update = args.target_update
self.autotune_entropy = args.autotune_entropy
self.pics = args.pics
if self.pics:
self.q_network = QNetworkCNN
self.gaussian_policy = GaussianPolicyCNN
self.deterministic_policy = DeterministicPolicyCNN
else:
self.q_network = QNetworkNN
self.gaussian_policy = GaussianPolicyNN
self.deterministic_policy = DeterministicPolicyNN
# Initialize Critic Network
self.critic = self.q_network(num_inputs, action_space.shape[0], args.hidden_size).to(device=self.device)
self.critic_optim = Adam(self.critic.parameters(), lr=self.learning_rate)
# self.scheduler_critic = StepLR(self.critic_optim, 1, gamma=0.99)
self.critic_target = self.q_network(num_inputs, action_space.shape[0], args.hidden_size).to(self.device)
hard_update(self.critic_target, self.critic)
logger.debug(self.critic)
# Initialize Actor Network
if self.policy_type == "Gaussian":
# Target Entropy = −dim(A) (e.g. , -6 for HalfCheetah-v2) as given in the paper
if self.autotune_entropy:
self.target_entropy = -torch.prod(torch.Tensor(action_space.shape).to(self.device)).item()
self.log_alpha = torch.zeros(1, requires_grad=True, device=self.device)
self.alpha_optim = Adam([self.log_alpha], lr=self.learning_rate)
# self.scheduler_alpha = StepLR(self.alpha_optim, 1, gamma=0.99)
self.policy = self.gaussian_policy(num_inputs, action_space.shape[0], args.hidden_size).to(self.device)
self.policy_optim = Adam(self.policy.parameters(), lr=self.learning_rate)
# self.scheduler_policy = StepLR(self.policy_optim, 1, gamma=0.99)
logger.debug(self.policy)
else:
self.alpha = 0
self.autotune_entropy = False
self.policy = self.deterministic_policy(num_inputs, action_space.shape[0], args.hidden_size).to(self.device)
self.policy_optim = Adam(self.policy.parameters(), lr=self.learning_rate)
# self.scheduler_policy = StepLR(self.policy_optim, 1, gamma=0.99)
self.folder = folder
self.logger = logger
self.replay_size = args.replay_size
self.min_replay_size = args.min_replay_size
self.num_episode = args.num_episode
self.pics = args.pics
self.state_buffer_size = args.state_buffer_size
self.warm_up_episodes = args.warm_up_episodes
self.batch_size = args.batch_size
self.updates_per_episode = args.updates_per_episode
self.eval = args.eval
self.eval_episode = args.eval_episode
self.eval_every = args.eval_every
self.env_name = args.env_name
self.entropy_backup = None
self.scale_reward = 1
def select_action(self, state: np.array, eval=False):
"""
Select the action based on the current state and the current policy network.
:param state: state of the environment
:type state: np.array
:param eval: True if we are in the test phase, False otherwise
:type eval: bool
:return: Array with the action proposed by the policy network
:rtype: np.array
"""
state = torch.FloatTensor(state).to(self.device).unsqueeze(0)
if not eval:
action, _, _ = self.policy.sample(state)
else:
_, _, action = self.policy.sample(state)
action = action.detach().cpu().numpy()
action = action[0]
assert not np.isnan(action).all()
# The next 3 lines of code are used to
mod = (self.env.action_space.high - self.env.action_space.low) / 2
tra = (self.env.action_space.high + self.env.action_space.low) / 2
action = action * mod + tra
return action
def update_parameters(self, memory, batch_size, updates):
"""
:param memory:
:param batch_size:
:param updates:
:return:
"""
# Sample a batch from memory
state_batch, action_batch, reward_batch, next_state_batch, mask_batch = memory.sample(batch_size=batch_size)
state_batch = torch.FloatTensor(state_batch).to(self.device)
next_state_batch = torch.FloatTensor(next_state_batch).to(self.device)
action_batch = torch.FloatTensor(action_batch).to(self.device)
reward_batch = torch.FloatTensor(reward_batch).to(self.device).unsqueeze(1)
mask_batch = torch.FloatTensor(mask_batch).to(self.device).unsqueeze(1)
# V(st+1) = 𝔼(at~D)
with torch.no_grad():
next_state_action, next_state_log_pi, _ = self.policy.sample(next_state_batch)
qf1_next_target, qf2_next_target = self.critic_target(next_state_batch, next_state_action)
min_qf_next_target = torch.min(qf1_next_target, qf2_next_target) - self.alpha * next_state_log_pi
next_q_value = self.scale_reward * reward_batch + mask_batch * self.gamma * min_qf_next_target
# Two Q-functions to mitigate positive bias in the policy improvement step
qf1, qf2 = self.critic(state_batch, action_batch)
qf1_loss = F.mse_loss(qf1, next_q_value) # JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2]
qf2_loss = F.mse_loss(qf2, next_q_value) # JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2]
pi, log_pi, _ = self.policy.sample(state_batch)
qf1_pi, qf2_pi = self.critic(state_batch, pi)
min_qf_pi = torch.min(qf1_pi, qf2_pi)
# Jπ = 𝔼st∼D,εt∼N[α * logπ(f(εt;st)|st) − Q(st,f(εt;st))]
policy_loss = ((self.alpha * log_pi) - min_qf_pi).mean()
self.critic_optim.zero_grad()
qf1_loss.backward()
self.critic_optim.step()
self.critic_optim.zero_grad()
qf2_loss.backward()
self.critic_optim.step()
self.policy_optim.zero_grad()
policy_loss.backward()
self.policy_optim.step()
if self.autotune_entropy:
alpha_loss = -(self.log_alpha * (log_pi + self.target_entropy).detach()).mean()
self.alpha_optim.zero_grad()
alpha_loss.backward()
self.alpha_optim.step()
self.alpha = self.log_alpha.exp()
alpha_tlogs = self.alpha.clone() # For TensorboardX logs
else:
alpha_loss = torch.tensor(0.).to(self.device)
alpha_tlogs = torch.tensor(self.alpha) # For TensorboardX logs
if updates % self.target_update == 0:
soft_update(self.critic_target, self.critic, self.tau)
return qf1_loss.item(), qf2_loss.item(), policy_loss.item(), alpha_loss.item(), alpha_tlogs.item()
def train(self, num_run=1, restore=False):
memory = None
start_episode = 0
start_updates = 0
start_run = 0
start_total_numsteps = 0
start_running_episode_reward = 0
start_running_episode_reward_100 = 0
start_rewards = []
start_last_episode_steps = 0
start_episode_reward = 0
start_episode_steps = 0
start_timing = 0
start_total_timing = 0
# Restore Phase
if restore:
# TODO: Not tested deeply yet
with open(self.folder + "memory.pkl", "rb") as pickle_out:
memory = ReplayMemory(self.replay_size, self.seed)
memory.load(pickle_out)
with open(self.folder + "context.json", "r+") as pickle_out:
(start_episode, start_run, start_updates, start_total_numsteps, start_running_episode_reward,
start_running_episode_reward_100, start_last_episode_steps, start_episode_reward, start_episode_steps,
start_timing, start_total_timing) = json.load(pickle_out)
with open(self.folder + "rewards.pkl", "rb") as pickle_out:
start_rewards = pickle.load(pickle_out)
self.restore_model()
self.logger.important("Load completed!")
in_ts = time.time()
# Start of the iteration on runs
for i_run in range(start_run, num_run):
# Break the loop if the phase "Save'n'Close" is triggered
if self.env.is_save_and_close():
break
self.logger.important(f"START TRAINING RUN {i_run}")
# Set Seed for repeatability
torch.manual_seed(self.seed + i_run)
np.random.seed(self.seed + i_run)
self.env.seed(self.seed + i_run)
self.env.action_space.np_random.seed(self.seed + i_run)
# Setup TensorboardX
writer_train = SummaryWriter(log_dir=self.folder + 'run_' + str(i_run) + '/train')
writer_learn = SummaryWriter(log_dir=self.folder + 'run_' + str(i_run) + '/learn')
writer_test = SummaryWriter(log_dir=self.folder + 'run_' + str(i_run) + '/test')
# Setup Replay Memory: create new memory if is not the restore case
if not restore:
memory = ReplayMemory(self.replay_size, self.seed)
# Create a backup memory for Forget-Phase
backup_memory = copy.deepcopy(memory)
# TRAINING LOOP
# All these variables must be backed up and restored
updates = start_updates
total_numsteps = start_total_numsteps
running_episode_reward = start_running_episode_reward
running_episode_reward_100 = start_running_episode_reward_100
rewards = start_rewards
i_episode = start_episode
last_episode_steps = start_last_episode_steps
episode_reward = start_episode_reward
episode_steps = start_episode_steps
timing = start_timing
total_timing = start_total_timing
updates_episode = 0
episode_images = list()
'''
LOOP: Episode
'''
while True:
# Stop the robot
self.env.stop_all_motors()
# Wait for the human to leave the command
while self.env.is_human_controlled():
pass
# Let's forget (if it is the case)
if self.env.is_forget_enabled():
# print('forget')
i_episode -= 1
print(len(memory))
# Restore Nets
self.restore_model()
self.env.reset_forget()
# Restore Memory
memory = copy.deepcopy(backup_memory)
print(len(memory))
# memory.forget_last(last_episode_steps)
self.logger.info("Last Episode Forgotten")
elif i_episode != start_episode:
# LEARNING AND PRINTING PHASE
ep_print = i_episode - 1
last_episode_steps = episode_steps
if self.pics:
for i, image in enumerate(episode_images):
writer_train.add_image('episode_{}'
.format(str(ep_print)), image.unsqueeze(0),
i)
if len(memory) > self.min_replay_size and ep_print > self.warm_up_episodes:
updates = self.learning_phase((last_episode_steps // 10) * 10 + 10, memory, updates,
writer_learn)
self.print_nets(writer_train, ep_print)
rewards.append(episode_reward)
running_episode_reward += (episode_reward - running_episode_reward) / (ep_print + 1)
if len(rewards) < 100:
running_episode_reward_100 = running_episode_reward
else:
last_100 = rewards[-100:]
running_episode_reward_100 = np.array(last_100).mean()
writer_train.add_scalar('reward/train', episode_reward, ep_print)
writer_train.add_scalar('reward/steps', last_episode_steps, ep_print)
writer_train.add_scalar('reward/running_mean', running_episode_reward, ep_print)
writer_train.add_scalar('reward/running_mean_last_100', running_episode_reward_100, ep_print)
self.logger.info("Ep. {}/{}, t {}, r_t {}, 100_mean {}, time_spent {}s | {}s "
.format(ep_print, self.num_episode, episode_steps, round(episode_reward, 2),
round(running_episode_reward_100, 2), round(timing, 2),
str(datetime.timedelta(seconds=total_timing))))
# Security Wall, useful for longer training Phase
while self.env.is_human_controlled():
pass
# Let's test (if it is the case)
if i_episode % self.eval_every == 0 and self.eval and i_episode != 0 and not restore:
# print('test')
self.test_phase(writer_test, i_run, updates)
# Wait for the human to leave the command
while self.env.is_human_controlled():
pass
# TODO: HP Checkpoint and check correctness of checkpoint restoring
if i_episode % self.eval_every == 0 and i_episode != 0 and not restore:
self.logger.important("Saving context...")
self.logger.info("To restart from here set this flag: --restore " + self.folder)
# Save Replay, net weights, hp, i_episode and i_run
with open(self.folder + "memory.pkl", "wb") as pickle_out:
memory.dump(pickle_out)
with open(self.folder + "context.json", "w+") as pickle_out:
json.dump((i_episode, i_run, updates, total_numsteps, running_episode_reward,
running_episode_reward_100, last_episode_steps, episode_reward, episode_steps,
timing, total_timing), pickle_out)
with open(self.folder + "rewards.pkl", "wb") as pickle_out:
pickle.dump(rewards, pickle_out)
self.backup_model()
if os.path.exists(self.folder[:-1] + "_bak" + self.folder[-1:]):
shutil.rmtree(self.folder[:-1] + "_bak" + self.folder[-1:])
print(self.folder[:-1] + "_bak" + self.folder[-1:])
shutil.copytree(self.folder, self.folder[:-1] + "_bak" + self.folder[-1:])
self.logger.important("Save completed!")
# Limit of episode/run reached. Let's start a new RUN
if i_episode > self.num_episode:
break
# Backup NNs and memory (useful in case of Forget Phase)
self.backup_model()
backup_memory = copy.deepcopy(memory)
# Setup the episode
self.logger.important(f"START EPISODE {i_episode}")
ts = time.time()
episode_reward = episode_steps = 0
done = False
info = {'undo': False}
state = self.env.reset()
state_buffer = None
# If you use CNNs, the use of StateBuffer is enabled (see doc).
if self.pics:
state_buffer = StateBuffer(self.state_buffer_size, state)
state = state_buffer.get_state()
episode_images = list()
updates_episode = 0
# Start of the episode
while not done:
if self.pics:
episode_images.append(state_buffer.get_tensor()[0])
if i_episode < self.warm_up_episodes or len(memory) < self.min_replay_size:
# Warm_up phase -> Completely random choice of an action
action = self.env.action_space.sample()
else:
# Training phase -> Action sampled from policy
action = self.select_action(state)
assert action.shape == self.env.action_space.shape
assert action is not None
writer_train.add_histogram('action_speed/episode_{}'
.format(str(i_episode)), torch.tensor(action[0]), episode_steps)
writer_train.add_histogram('action_turn/episode_{}'
.format(str(i_episode)), torch.tensor(action[1]), episode_steps)
# Make the action
next_state, reward, done, info = self.env.step(action)
# Save the step
if self.pics:
state_buffer.push(next_state)
next_state = state_buffer.get_state()
episode_steps += 1
total_numsteps += 1
episode_reward += reward
mask = 1 if done else float(not done)
# Push the transition in the memory only if n steps is greater than 5
# print('push')
if episode_steps > 5:
memory.push(state, action, reward, next_state, mask)
state = next_state
print("Memory {}/{}".format(len(memory), self.replay_size))
timing = time.time() - ts
total_timing = time.time() - in_ts
start_episode = 0
i_episode += 1
# Disable restore phase after the restored run
restore = False
def do_one_test(self):
old = self.env.reset()
state_buffer = StateBuffer(self.state_buffer_size, old)
episode_reward = 0
done = False
while not done:
state = state_buffer.get_state()
action = self.select_action(state, eval=True)
next_state, reward, done, _ = self.env.step(action)
episode_reward += reward
state_buffer.push(next_state)
return episode_reward
# Save model parameters
def save_model(self, env_name, folder, i_episode, suffix=""):
model_f = folder + 'models/' + f"episode_{i_episode}/"
if not os.path.exists(model_f):
os.makedirs(model_f)
actor_path = model_f + f"sac_actor_{env_name}_episode{i_episode}"
critic_path = model_f + f"sac_critic_{env_name}_episode{i_episode}"
torch.save(self.policy.state_dict(), actor_path)
torch.save(self.critic.state_dict(), critic_path)
def load_model_to_play(self, env_name, folder, i_run, i_episode, suffix=""):
model_f = folder + f'run_{i_run}/' + 'models/' + f"episode_{i_episode}/"
if not os.path.exists(model_f):
os.makedirs(model_f)
actor_path = model_f + f"sac_actor_{env_name}_episode{i_episode}"
critic_path = model_f + f"sac_critic_{env_name}_episode{i_episode}"
self.load_model(actor_path, critic_path)
# Load model parameters
def load_model(self, actor_path, critic_path):
if actor_path is not None:
self.policy.load_state_dict(torch.load(actor_path))
if critic_path is not None:
self.critic.load_state_dict(torch.load(critic_path))
# Backup model parameters
def backup_model(self):
model_f = self.folder + 'backup/'
if not os.path.exists(model_f):
os.makedirs(model_f)
actor_path = model_f + f"sac_actor"
critic_path = model_f + f"sac_critic"
critic_t_path = model_f + f"sac_critic_t"
torch.save(self.policy.state_dict(), actor_path)
torch.save(self.critic.state_dict(), critic_path)
torch.save(self.critic_target.state_dict(), critic_t_path)
if self.autotune_entropy:
# entropy_t_path = model_f + f"sac_entropy_t"
log_alpha_path = model_f + f"sac_log_alpha"
# torch.save(self.target_entropy, entropy_t_path)
torch.save(self.log_alpha, log_alpha_path)
# Restore model parameters
def restore_model(self):
model_f = self.folder + 'backup/'
actor_path = model_f + f"sac_actor"
critic_path = model_f + f"sac_critic"
critic_t_path = model_f + f"sac_critic_t"
if actor_path is not None:
self.policy.load_state_dict(torch.load(actor_path))
if critic_path is not None:
self.critic.load_state_dict(torch.load(critic_path))
if critic_t_path is not None:
self.critic_target.load_state_dict(torch.load(critic_t_path))
if self.autotune_entropy:
# entropy_t_path = model_f + f"sac_entropy_t"
log_alpha_path = model_f + f"sac_log_alpha"
# self.target_entropy = torch.load(entropy_t_path)
self.log_alpha = torch.load(log_alpha_path)
self.alpha_optim = Adam([self.log_alpha], lr=self.learning_rate)
def test_phase(self, writer_test, i_run, i_episode):
n_tests = 0
ts = time.time()
rewards = []
while n_tests < self.eval_episode:
episode_reward = self.do_one_test()
while self.env.is_human_controlled():
pass
if self.env.is_forget_enabled():
self.logger.info("Last Test Episode Forgotten")
self.env.reset_forget()
else:
rewards.append(episode_reward)
n_tests += 1
rewards = np.array(rewards)
writer_test.add_scalar('test/average_reward', rewards.mean(), i_episode)
writer_test.add_scalar('test/max_reward', rewards.max(), i_episode)
writer_test.add_scalar('test/min_reward', rewards.min(), i_episode)
writer_test.add_scalar('test/stdev_reward', rewards.std(), i_episode)
self.logger.info("----------------------------------------")
self.logger.info("Test {} ep.: {}, m_r: {}, max: {}, min: {}, std: {} time_spent {}s"
.format(self.eval_episode,
i_episode,
round(rewards.mean(), 2),
round(rewards.max(), 2),
round(rewards.min(), 2),
round(rewards.std(), 2),
round(time.time() - ts, 2)))
self.save_model(self.env_name, self.folder + f"run_{i_run}/", i_episode)
self.logger.info('Saving models...')
self.logger.info("----------------------------------------")
def learning_phase(self, updates_per_episode, memory, updates, writer_learn):
self.logger.info("Learning phase starts...")
time_update = time.time()
# Let's update our parameters, this is the main part of learning
for i in range(updates_per_episode):
# Update parameters of all the networks
critic_1_loss, critic_2_loss, policy_loss, ent_loss, alpha = self.update_parameters(memory,
self.batch_size,
updates)
writer_learn.add_scalar('loss/critic_1', critic_1_loss, updates)
writer_learn.add_scalar('loss/critic_2', critic_2_loss, updates)
writer_learn.add_scalar('loss/policy', policy_loss, updates)
writer_learn.add_scalar('loss/entropy_loss', ent_loss, updates)
writer_learn.add_scalar('entropy_temperature/alpha', alpha, updates)
writer_learn.add_scalar('entropy_temperature/learning_rate', torch.tensor(self.learning_rate),
updates)
updates += 1
# print(updates)
self.logger.info("Update (up. {})took {}s"
.format(updates_per_episode,
round(time.time() - time_update, 2)))
return updates
def print_nets(self, writer_train: SummaryWriter, ep_print: int):
for k, v in self.policy.state_dict().items():
# print(k)
if (k.endswith('bias') or k.endswith('weight')) and (k.startswith('conv') or k.startswith('conv')):
writer_train.add_histogram('policy/' + k, v, global_step=ep_print)
for k, v in self.critic.state_dict().items():
if (k.endswith('bias') or k.endswith('weight')) and (k.startswith('conv') or k.startswith('conv')):
writer_train.add_histogram('critic/' + k, v, global_step=ep_print)
for k, v in self.critic_target.state_dict().items():
if (k.endswith('bias') or k.endswith('weight')) and (k.startswith('conv') or k.startswith('conv')):
writer_train.add_histogram('critic_target/' + k, v, global_step=ep_print)
pass
def play(self):
n_tests = 0
ts = time.time()
total_reward = 0
while True:
episode_reward = self.do_one_test()
while self.env.is_human_controlled():
pass
if self.env.is_forget_enabled():
self.logger.info("Last Test Episode Forgotten")
self.env.reset_forget()
else:
n_tests += 1
total_reward += episode_reward
self.logger.info("Test {}, mean_r: {}, time_spent {}s"
.format(n_tests,
round(total_reward / n_tests, 2),
round(time.time() - ts, 2)))