-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmain.vhd
270 lines (239 loc) · 7.59 KB
/
main.vhd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
------------------------------------------------------
-- This is the main script that is run when simulating
-- in modelsim.
------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity main is
port(
ck: in std_logic
);
end main;
architecture beh of main is
-- dummy vector
--signal dummy_vector: std_logic_vector(31 downto 0):= "00000000000000000000000000000000";
signal instr_address: std_logic_vector(31 downto 0); -- Address of the instruction to run
signal next_address: std_logic_vector(31 downto 0); -- Next address to be loaded into PC
signal instruction: std_logic_vector(31 downto 0); -- The actual instruction to run
signal read_data_1, read_data_2, write_data, extended_immediate, shifted_immediate, alu_in_2, alu_result, last_instr_address, incremented_address, add2_result, mux4_result, concatenated_pc_and_jump_address, mem_read_data: std_logic_vector(31 downto 0):= "00000000000000000000000000000000"; -- vhdl does not allow me to port map " y => incremented_address(31 downto 28) & shifted_jump_address "
signal shifted_jump_address: std_logic_vector(27 downto 0);
signal jump_address: std_logic_vector(25 downto 0);
signal immediate: std_logic_vector(15 downto 0);
signal opcode, funct: std_logic_vector(5 downto 0);
signal rs, rt, rd, shampt, write_reg: std_logic_vector(4 downto 0);
signal alu_control_fuct: std_logic_vector(3 downto 0);
signal reg_dest, jump, branch, mem_read, mem_to_reg, mem_write, alu_src, reg_write, alu_zero, branch_and_alu_zero: std_logic:= '0'; -- vhdl does not allow me to port map " s => (branch and alu_zero) "
signal alu_op: std_logic_vector(1 downto 0);
-- Enum for checking if the instructions have loaded
type state is (loading, running, done);
signal s: state:= loading;
-- The clock for the other components; starts when the state is ready
signal en: std_logic:= '0';
-- Load the other components
component pc
port (
ck: in std_logic;
address_to_load: in std_logic_vector(31 downto 0);
current_address: out std_logic_vector(31 downto 0)
);
end component;
component instruction_memory
port (
read_address: in STD_LOGIC_VECTOR (31 downto 0);
instruction, last_instr_address: out STD_LOGIC_VECTOR (31 downto 0)
);
end component;
component registers
port (
ck: in std_logic;
reg_write: in std_logic;
read_reg_1, read_reg_2, write_reg: in std_logic_vector(4 downto 0);
write_data: in std_logic_vector(31 downto 0);
read_data_1, read_data_2: out std_logic_vector(31 downto 0)
);
end component;
component control
port (
opcode: in std_logic_vector(5 downto 0);
reg_dest,jump, branch, mem_read, mem_to_reg, mem_write, alu_src, reg_write: out std_logic;
alu_op: out std_logic_vector(1 downto 0)
);
end component;
component mux
generic (n: natural:= 1);
port (
x,y: in std_logic_vector(n-1 downto 0);
s: in std_logic;
z: out std_logic_vector(n-1 downto 0)
);
end component;
component alu_control
port (
funct: in std_logic_vector(5 downto 0);
alu_op: in std_logic_vector(1 downto 0);
alu_control_fuct: out std_logic_vector(3 downto 0)
);
end component;
component sign_extend
port (
x: in std_logic_vector(15 downto 0);
y: out std_logic_vector(31 downto 0)
);
end component;
component alu
port (
in_1, in_2: std_logic_vector(31 downto 0);
alu_control_fuct: in std_logic_vector(3 downto 0);
zero: out std_logic;
alu_result: out std_logic_vector(31 downto 0)
);
end component;
component shifter
generic (n1: natural:= 32; n2: natural:= 32; k: natural:= 2);
port (
x: in std_logic_vector(n1-1 downto 0);
y: out std_logic_vector(n2-1 downto 0)
);
end component;
component adder
port (
x,y: in std_logic_vector(31 downto 0);
z: out std_logic_vector(31 downto 0)
);
end component;
component memory is
port (
address, write_data: in STD_LOGIC_VECTOR (31 downto 0);
MemWrite, MemRead,ck: in STD_LOGIC;
read_data: out STD_LOGIC_VECTOR (31 downto 0)
);
end component;
begin
process(ck)
begin
case s is
when running =>
en <= ck;
when others =>
en <= '0';
end case;
if ck='1' and ck'event then
case s is
when loading =>
s <= running; -- give 1 cycle to load the instructions into memory
when running =>
if instr_address > last_instr_address then
s <= done; -- stop moving the pc after it has passed the last instruction
en <= '0';
end if;
when others =>
null;
end case;
end if;
end process;
-- Wire some stuff
opcode <= instruction(31 downto 26);
rs <= instruction(25 downto 21);
rt <= instruction(20 downto 16);
rd <= instruction(15 downto 11);
shampt <= instruction(10 downto 6);
funct <= instruction(5 downto 0);
immediate <= instruction(15 downto 0);
jump_address <= instruction(25 downto 0);
Prog_Count: pc port map (en, next_address, instr_address);
IM: instruction_memory port map (instr_address, instruction, last_instr_address);
CONTROL1: control port map (
opcode => opcode,
reg_dest => reg_dest,
jump => jump,
branch => branch,
mem_read => mem_read,
mem_to_reg => mem_to_reg,
mem_write => mem_write,
alu_src => alu_src,
reg_write => reg_write,
alu_op => alu_op
);
-- This mux is going into Register's Write Register port; chooses between rt and rd
MUX1: mux generic map(5) port map (
x => rt,
y => rd,
s => reg_dest,
z => write_reg
);
REG: registers port map (
ck => en,
reg_write => reg_write,
read_reg_1 => rs,
read_reg_2 => rt,
write_reg => write_reg,
write_data => write_data,
read_data_1 => read_data_1,
read_data_2 => read_data_2
);
ALU_CONTRL: alu_control port map (funct, alu_op, alu_control_fuct);
---- This mux is going into the ALU's second input; chooses between read_data_2 and the immediate
SGN_EXT: sign_extend port map (immediate, extended_immediate);
MUX2: mux generic map(32) port map (
x => read_data_2,
y => extended_immediate,
s => alu_src,
z => alu_in_2
);
ALU1: alu port map (read_data_1, alu_in_2, alu_control_fuct, alu_zero, alu_result);
-- This mux is going into the Register's Write Data; chooses between the alu_result and read_data from data memory
MUX3: mux generic map (32) port map (
x => alu_result,
y => mem_read_data,
s => mem_to_reg,
z => write_data
);
-- The Shift Left 2 for the immediate
SHIFT1: shifter port map (
x => extended_immediate,
y => shifted_immediate
);
-- The +4 adder for the pc
ADD1: adder port map (
x => instr_address,
y => "00000000000000000000000000000100",
z => incremented_address
);
-- The mux between the +4 adder and the following adder
branch_and_alu_zero <= branch and alu_zero;
MUX4: mux generic map (32) port map (
x => incremented_address,
y => add2_result,
s => branch_and_alu_zero,
z => mux4_result
);
-- The adder between the PC and the sign-extended immediate
ADD2: adder port map (
x => incremented_address,
y => shifted_immediate,
z => add2_result
);
-- The Shift Left 2 for the jump instruction
SHIFT2: shifter generic map (n1 =>26, n2 => 28) port map (
x => jump_address,
y => shifted_jump_address
);
-- This mux chooses between the result of mux4 and the jump address
concatenated_pc_and_jump_address <= incremented_address(31 downto 28) & shifted_jump_address; -- I'm ashamed of myself
MUX5: mux generic map (32) port map (
x => mux4_result,
y => concatenated_pc_and_jump_address,
s => jump,
z => next_address
);
MEM: memory port map (
address => alu_result,
write_data => read_data_2,
MemWrite => mem_write,
MemRead => mem_read,
ck => en,
read_data => mem_read_data
);
end beh;