-
Notifications
You must be signed in to change notification settings - Fork 0
/
Generate.nb
1446 lines (1394 loc) · 66.2 KB
/
Generate.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 66222, 1438]
NotebookOptionsPosition[ 62900, 1384]
NotebookOutlinePosition[ 63278, 1400]
CellTagsIndexPosition[ 63235, 1397]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Generate Comparison Figure", "Subsection",
CellChangeTimes->{{3.7316544616872253`*^9,
3.73165446556884*^9}},ExpressionUUID->"a840e831-49a4-41b7-84b7-\
c5aad076446c"],
Cell["\<\
This file is used to perform correction of the emission rate produced \
according to the detector efficiency, and generate the figure of the \
comparison of theoretical and experimental result.\
\>", "Text",
CellChangeTimes->{{3.7316544741878233`*^9,
3.731654554572424*^9}},ExpressionUUID->"7d7b2c10-8492-4e64-a757-\
47b38f6e9999"],
Cell["\<\
Copyright \[Copyright] 2018 Changkai Zhang
Contact: [email protected]
Licensed under GPL 3.0\
\>", "Text",
CellChangeTimes->{{3.7316512313059464`*^9, 3.7316512693978095`*^9}, {
3.7316513358822455`*^9,
3.731651413927269*^9}},ExpressionUUID->"1c31851e-55f5-4ad8-8ed6-\
5cb640112d21"],
Cell[TextData[{
"First, read in the processed data from Processed.mx. We particularly need \
the emission rate ",
StyleBox["Rate[\[Theta]]",
FontWeight->"Bold"],
"."
}], "Text",
CellChangeTimes->{{3.731654574283781*^9,
3.7316546226464567`*^9}},ExpressionUUID->"e0952a89-7919-42b7-a046-\
a323cd9f0a7a"],
Cell[BoxData[
RowBox[{"<<",
RowBox[{"(",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], "<>", "\"\</Processed.mx\>\""}],
")"}]}]], "Input",
CellChangeTimes->{{3.7315975200311813`*^9,
3.731597543290412*^9}},ExpressionUUID->"a923b0e2-bebd-4dcf-8adc-\
97831cf1c6c8"],
Cell["\<\
Define functions to generate the ratio of photon energies before and after \
the scattering, as well as the energy of scattered photons.\
\>", "Text",
CellChangeTimes->{{3.731654695992171*^9,
3.7316547534267364`*^9}},ExpressionUUID->"dcb76249-3348-43cf-93b8-\
a05db4f9800f"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"EngRatio", "[", "\[Theta]_", "]"}], ":=",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
RowBox[{"(",
RowBox[{"662", "/", "511"}], ")"}], "*",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"Cos", "[",
RowBox[{"\[Theta]", " ", "\[Degree]"}], "]"}]}], ")"}]}]}],
")"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Energy", "[", "\[Theta]_", "]"}], ":=",
RowBox[{"662", "*",
RowBox[{"EngRatio", "[", "\[Theta]", "]"}]}]}]}], "Input",
CellChangeTimes->{{3.7316046867243433`*^9, 3.7316047048670254`*^9}, {
3.731604740294387*^9, 3.731604790685461*^9}, {3.731604977644451*^9,
3.7316049840983343`*^9}, 3.731605277564283*^9, {3.7316053188826156`*^9,
3.7316053219249487`*^9}, {3.731605354614877*^9,
3.7316054160237465`*^9}},ExpressionUUID->"308284f0-f37b-4739-be92-\
7759d5bcae61"],
Cell["\<\
Compute the detection efficiency of the detector. According to the manual of \
the detector, the efficiency can be regarded as piecewise linearly dependent \
on the energy.\
\>", "Text",
CellChangeTimes->{{3.7316547626781435`*^9,
3.731654833170292*^9}},ExpressionUUID->"ab15d483-d5de-4a00-a49b-\
370ca4a1271a"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"EfficiencyHigh", "[", "\[Theta]_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"-", "1.2"}], "*",
SuperscriptBox["10",
RowBox[{"-", "3"}]], "*",
RowBox[{"Energy", "[", "\[Theta]", "]"}]}], "+", "0.92"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"EfficiencyLow", "[", "\[Theta]_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"-", "2.7"}], "*",
SuperscriptBox["10",
RowBox[{"-", "3"}]], "*",
RowBox[{"Energy", "[", "\[Theta]", "]"}]}], "+", "1.5"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"EfficiencyHigh", "/@",
RowBox[{
RowBox[{"{",
RowBox[{"15", ",", "30", ",", "35", ",", "45", ",", "55", ",", "60"}],
"}"}], "~", "Join", "~",
RowBox[{"(",
RowBox[{"EfficiencyLow", "/@",
RowBox[{"{",
RowBox[{"70", ",", "85", ",", "95", ",", "105", ",", "115"}], "}"}]}],
")"}]}]}]}], "Input",
CellChangeTimes->{{3.7316045372035704`*^9, 3.7316046453022547`*^9}, {
3.731604676200765*^9, 3.73160468185664*^9}, 3.731604771642251*^9, {
3.731604810466385*^9, 3.731604828393466*^9}, {3.7316048665386367`*^9,
3.7316049128151755`*^9}, {3.731604952668769*^9, 3.73160506590756*^9}, {
3.731605146018855*^9, 3.7316052305171022`*^9}, {3.731605459130622*^9,
3.7316055080767*^9}, {3.731605808242688*^9,
3.731605816704813*^9}},ExpressionUUID->"42fbb850-8df9-4953-9adf-\
efbbcffa0ef3"],
Cell[BoxData[
FormBox[
RowBox[{"{",
RowBox[{
"0.1591847138382888`", ",", "0.24308759622590592`", ",",
"0.2763902630910753`", ",", "0.3441153349312208`", ",",
"0.4082865379243251`", ",", "0.4378878859857483`", ",",
"0.12564487833965032`", ",", "0.12567269966176575`", ",",
"0.1256900144955495`", ",", "0.125705532148218`", ",",
"0.12571897648394537`"}], "}"}], TraditionalForm]], "Output",
CellChangeTimes->{{3.731605202759404*^9, 3.7316052341906586`*^9}, {
3.731605471631395*^9, 3.7316055090368443`*^9}, 3.7316058423713894`*^9,
3.731785528029249*^9,
3.731786114478622*^9},ExpressionUUID->"09692263-abe7-4fc1-97cc-\
11c551dc8a8b"]
}, Open ]],
Cell[TextData[{
"Store the efficiency data in ",
StyleBox["Efficiency[\[Theta]]",
FontWeight->"Bold"],
"."
}], "Text",
CellChangeTimes->{{3.731654870264469*^9,
3.731654886580882*^9}},ExpressionUUID->"a7658274-f5cd-42e8-bb58-\
e4fd05045a88"],
Cell[BoxData[{
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"Efficiency", "[", "angle", "]"}], "=",
RowBox[{"EfficiencyHigh", "[", "angle", "]"}]}], ",",
RowBox[{"{",
RowBox[{"angle", ",",
RowBox[{"{",
RowBox[{"15", ",", "30", ",", "35", ",", "45", ",", "55", ",", "60"}],
"}"}]}], "}"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"Efficiency", "[", "angle", "]"}], "=",
RowBox[{"EfficiencyLow", "[", "angle", "]"}]}], ",",
RowBox[{"{",
RowBox[{"angle", ",",
RowBox[{"{",
RowBox[{"70", ",", "85", ",", "95", ",", "105", ",", "115"}], "}"}]}],
"}"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.731605685680781*^9,
3.7316057686352854`*^9}},ExpressionUUID->"31f95164-692d-4c43-b585-\
af19c5a82b33"],
Cell["Correct the emission rate according to the efficiency.", "Text",
CellChangeTimes->{{3.7316549047310104`*^9,
3.7316549183297577`*^9}},ExpressionUUID->"3f162d65-b3ee-4537-a242-\
ca60e7904ad1"],
Cell[BoxData[
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"RefinedRate", "[", "angle", "]"}], "=",
RowBox[{
RowBox[{"Rate", "[", "angle", "]"}], "/",
RowBox[{"Efficiency", "[", "angle", "]"}]}]}], ",",
RowBox[{"{",
RowBox[{"angle", ",",
RowBox[{"{",
RowBox[{
"15", ",", "30", ",", "35", ",", "45", ",", "55", ",", "60", ",", "70",
",", "85", ",", "95", ",", "105", ",", "115"}], "}"}]}], "}"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.7316055726435237`*^9, 3.7316056166245604`*^9}, {
3.731605848364024*^9, 3.7316058718314734`*^9}, {3.731605928157405*^9,
3.7316059289218907`*^9}},ExpressionUUID->"42fd59d0-8c58-46d7-a896-\
44ae7ee170f6"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"RefinedRate", "/@",
RowBox[{"{",
RowBox[{
"15", ",", "30", ",", "35", ",", "45", ",", "55", ",", "60", ",", "70",
",", "85", ",", "95", ",", "105", ",", "115"}], "}"}]}]], "Input",
CellChangeTimes->{{3.731605879007204*^9,
3.731605922406269*^9}},ExpressionUUID->"11ed0f66-925b-46e6-bd1c-\
6d4dd278841c"],
Cell[BoxData[
FormBox[
RowBox[{"{",
RowBox[{
RowBox[{"\[LeftAssociation]",
RowBox[{
RowBox[{"\<\"Value\"\>", "\[Rule]", "2.616620467318665`"}], ",",
RowBox[{"\<\"Error\"\>", "\[Rule]", "0.09618520130472927`"}]}],
"\[RightAssociation]"}], ",",
RowBox[{"\[LeftAssociation]",
RowBox[{
RowBox[{"\<\"Value\"\>", "\[Rule]", "1.1115461062583456`"}], ",",
RowBox[{"\<\"Error\"\>", "\[Rule]", "0.043401155394613464`"}]}],
"\[RightAssociation]"}], ",",
RowBox[{"\[LeftAssociation]",
RowBox[{
RowBox[{"\<\"Value\"\>", "\[Rule]", "0.6470803470873391`"}], ",",
RowBox[{"\<\"Error\"\>", "\[Rule]", "0.03661882045827726`"}]}],
"\[RightAssociation]"}], ",",
RowBox[{"\[LeftAssociation]",
RowBox[{
RowBox[{"\<\"Value\"\>", "\[Rule]", "0.49163120402184163`"}], ",",
RowBox[{"\<\"Error\"\>", "\[Rule]", "0.01714844752032119`"}]}],
"\[RightAssociation]"}], ",",
RowBox[{"\[LeftAssociation]",
RowBox[{
RowBox[{"\<\"Value\"\>", "\[Rule]", "0.37769231657271135`"}], ",",
RowBox[{"\<\"Error\"\>", "\[Rule]", "0.016271804618598815`"}]}],
"\[RightAssociation]"}], ",",
RowBox[{"\[LeftAssociation]",
RowBox[{
RowBox[{"\<\"Value\"\>", "\[Rule]", "0.3235082227328359`"}], ",",
RowBox[{"\<\"Error\"\>", "\[Rule]", "0.01584032189437404`"}]}],
"\[RightAssociation]"}], ",",
RowBox[{"\[LeftAssociation]",
RowBox[{
RowBox[{"\<\"Value\"\>", "\[Rule]", "0.2549399173237732`"}], ",",
RowBox[{"\<\"Error\"\>", "\[Rule]", "0.014623389681591782`"}]}],
"\[RightAssociation]"}], ",",
RowBox[{"\[LeftAssociation]",
RowBox[{
RowBox[{"\<\"Value\"\>", "\[Rule]", "0.19942852012234344`"}], ",",
RowBox[{"\<\"Error\"\>", "\[Rule]", "0.004642981225908128`"}]}],
"\[RightAssociation]"}], ",",
RowBox[{"\[LeftAssociation]",
RowBox[{
RowBox[{"\<\"Value\"\>", "\[Rule]", "0.18038406893725512`"}], ",",
RowBox[{"\<\"Error\"\>", "\[Rule]", "0.009315176520399327`"}]}],
"\[RightAssociation]"}], ",",
RowBox[{"\[LeftAssociation]",
RowBox[{
RowBox[{"\<\"Value\"\>", "\[Rule]", "0.1802942755936724`"}], ",",
RowBox[{"\<\"Error\"\>", "\[Rule]", "0.005268889781680094`"}]}],
"\[RightAssociation]"}], ",",
RowBox[{"\[LeftAssociation]",
RowBox[{
RowBox[{"\<\"Value\"\>", "\[Rule]", "0.17442295161505997`"}], ",",
RowBox[{"\<\"Error\"\>", "\[Rule]", "0.00781552416683346`"}]}],
"\[RightAssociation]"}]}], "}"}], TraditionalForm]], "Output",
CellChangeTimes->{{3.7316058818228607`*^9, 3.731605900456663*^9},
3.7316059526630087`*^9, 3.731785528151433*^9,
3.73178611459072*^9},ExpressionUUID->"4b60b5df-d8cd-472f-b367-\
5201eb6e850c"]
}, Open ]],
Cell["\<\
The theoretical results include the Thomson scattering from the classical \
Electrodynamics and Klein-Nishina formula from the quantum Electrodynamics. \
They are defined here.\
\>", "Text",
CellChangeTimes->{{3.7316549525011554`*^9, 3.731655000532922*^9},
3.731785477400839*^9},ExpressionUUID->"0fbbc0d4-75bb-4977-88f3-\
22c6e636b80f"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"KleinNishina", "[", "\[Theta]_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"EngRatio", "[", "\[Theta]", "]"}], "^", "2"}], "*",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"EngRatio", "[", "\[Theta]", "]"}], "+",
RowBox[{
RowBox[{"EngRatio", "[", "\[Theta]", "]"}], "^",
RowBox[{"-", "1"}]}], "-",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"\[Theta]", " ", "\[Degree]"}], "]"}], "^", "2"}]}], ")"}],
"/", "2"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Thomson", "[", "\[Theta]_", "]"}], ":=",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{"\[Theta]", " ", "\[Degree]"}], "]"}], "^", "2"}]}], ")"}],
"/", "2"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.7316061207705383`*^9, 3.7316062940473013`*^9}, {
3.7316063926855497`*^9, 3.731606394347681*^9},
3.7317854841866517`*^9},ExpressionUUID->"e3e08b81-2447-436e-9f23-\
1127e599bd1f"],
Cell["\<\
Due to the lack of luminosity information, the emission rate should be \
normalized. Normalization factor is adjusted manually.\
\>", "Text",
CellChangeTimes->{{3.7316550166079717`*^9,
3.73165505836629*^9}},ExpressionUUID->"23c7fd94-c361-4751-9a1d-\
d2d71d37d338"],
Cell[BoxData[
RowBox[{
RowBox[{"NormFactor", "=", "1.15"}], ";",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"NormalizedRate", "[", "angle", "]"}], "=",
RowBox[{
RowBox[{"RefinedRate", "[", "angle", "]"}], "/", "NormFactor"}]}], ",",
RowBox[{"{",
RowBox[{"angle", ",",
RowBox[{"{",
RowBox[{
"15", ",", "30", ",", "35", ",", "45", ",", "55", ",", "60", ",", "70",
",", "85", ",", "95", ",", "105", ",", "115"}], "}"}]}], "}"}]}],
"]"}]}]], "Input",
CellChangeTimes->{{3.731607680522231*^9, 3.731607751579393*^9}, {
3.7316078128425474`*^9,
3.731607827987912*^9}},ExpressionUUID->"6da938ab-6a86-45ab-8733-\
dd9392c96a48"],
Cell["Combine the angle info to generate data for plot.", "Text",
CellChangeTimes->{{3.731655073015212*^9,
3.7316550853686824`*^9}},ExpressionUUID->"f7ca6fe0-26a7-4de1-8c20-\
2d32d7309bb6"],
Cell[BoxData[
RowBox[{
RowBox[{"PlotData", "=",
RowBox[{"MapThread", "[",
RowBox[{"Prepend", ",",
RowBox[{"{",
RowBox[{
RowBox[{"Values", "[",
RowBox[{"NormalizedRate", "/@",
RowBox[{"{",
RowBox[{
"15", ",", "30", ",", "35", ",", "45", ",", "55", ",", "60", ",",
"70", ",", "85", ",", "95", ",", "105", ",", "115"}], "}"}]}],
"]"}], ",",
RowBox[{"{",
RowBox[{
"15", ",", "30", ",", "35", ",", "45", ",", "55", ",", "60", ",",
"70", ",", "85", ",", "95", ",", "105", ",", "115"}], "}"}]}],
"}"}]}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.731607758100916*^9,
3.7316077654149027`*^9}},ExpressionUUID->"da406a92-3f10-4355-9fcb-\
89a2f9242029"],
Cell["Preview the plot.", "Text",
CellChangeTimes->{{3.7316551071003256`*^9,
3.7316551121522226`*^9}},ExpressionUUID->"ce67d4d7-6a4f-4cfe-a6af-\
28d494b93632"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Needs", "[", "\"\<ErrorBarPlots`\>\"", "]"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"KleinNishina", "[", "\[Theta]", "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "0", ",", "120"}], "}"}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"Placed", "[",
RowBox[{
RowBox[{"{", "\"\<Klein-Nishina\>\"", "}"}], ",",
RowBox[{"{",
RowBox[{"Top", ",", "Right"}], "}"}]}], "]"}]}]}], "]"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Thomson", "[", "\[Theta]", "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "0", ",", "120"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Orange"}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"Placed", "[",
RowBox[{
RowBox[{"{", "\"\<Thomson\>\"", "}"}], ",",
RowBox[{"{",
RowBox[{"Top", ",", "Right"}], "}"}]}], "]"}]}]}], "]"}], ",",
RowBox[{"ErrorListPlot", "[",
RowBox[{"PlotData", ",",
RowBox[{"PlotStyle", "\[Rule]", "Black"}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"Placed", "[",
RowBox[{
RowBox[{"{", "\"\<Experiment\>\"", "}"}], ",",
RowBox[{"{",
RowBox[{"Top", ",", "Right"}], "}"}]}], "]"}]}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"2.5", ",", "124"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.055", ",", "1.05"}], "}"}]}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], ",",
RowBox[{"AspectRatio", "\[Rule]", "1"}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "False", ",", "False"}], "}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<Angle / Degree\>\"", ",",
"\"\<Cross Section ( Normalized )\>\""}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"FontSize", "\[Rule]", "12"}], "}"}]}]}], "]"}]}], "Input",
CellChangeTimes->{{3.731606302063032*^9, 3.7316063561802664`*^9}, {
3.7316065669115863`*^9, 3.7316065753875246`*^9}, {3.7316073570144386`*^9,
3.7316073647839346`*^9}, {3.731607434433365*^9, 3.7316074752441874`*^9}, {
3.7316075124981236`*^9, 3.7316075355197906`*^9}, {3.73160763264812*^9,
3.7316076376911545`*^9}, {3.731607845245775*^9, 3.731607859862345*^9}, {
3.731607895740408*^9, 3.7316079315212154`*^9}, {3.7316079975641375`*^9,
3.73160808332777*^9}, {3.7316083073075843`*^9, 3.7316083387136903`*^9}, {
3.7316084197502837`*^9, 3.7316084615951996`*^9}, {3.7316085013214903`*^9,
3.731608509542409*^9}, {3.731608544425641*^9, 3.731608636498126*^9}, {
3.7316087562506304`*^9, 3.7316087917797184`*^9}, {3.7316088447807655`*^9,
3.7316089009889135`*^9}, {3.7316090833991194`*^9,
3.7316091229554043`*^9}, {3.7316092824406967`*^9,
3.7316093959802313`*^9}, {3.7316094898868227`*^9,
3.7316095634080353`*^9}, {3.731609611902129*^9, 3.7316096358146105`*^9}, {
3.7316097340984216`*^9, 3.7316097473211527`*^9}, {3.731609800104004*^9,
3.731609936188623*^9}, {3.7316100114935403`*^9, 3.731610013658846*^9}, {
3.731610137457973*^9, 3.731610147841473*^9}, {3.7316101886490216`*^9,
3.7316101914078197`*^9}, {3.7316102982773333`*^9, 3.731610302034636*^9}, {
3.7316103387984495`*^9, 3.7316103738205905`*^9}, {3.7316104102377453`*^9,
3.7316104414306393`*^9}, {3.731610575474866*^9, 3.731610633271048*^9}, {
3.731610760735199*^9, 3.7316107984183407`*^9}, {3.731610838453887*^9,
3.731610850116702*^9}, {3.731610949416728*^9, 3.7316109527890887`*^9}, {
3.7316110068399973`*^9, 3.7316110715096273`*^9}, {3.73161119153239*^9,
3.7316112135002184`*^9}, {3.731611405690694*^9, 3.731611407766367*^9}, {
3.7316118447114305`*^9, 3.7316118842014427`*^9}, {3.7316119190652103`*^9,
3.731611919508279*^9}, 3.731612203363841*^9, {3.731785491797406*^9,
3.7317854971063232`*^9}},ExpressionUUID->"04650c41-e3a0-4002-b350-\
d1e2278382d0"],
Cell[BoxData[
FormBox[
TemplateBox[{GraphicsBox[{{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwV1wlQjt0XAPBXiUKkQpYWSl9apLSpOKddSZKl3uWhIoWSFipCpY0UJXmF
9O8LLdJG2pD3CW2itIrK0qrep7RL+T/fnblz5zdn5sw99565M3ets6ediwCD
wfhEz//W8fbKcoWo8m0//v43KGhIkgowakkB0QQd71nauOy9s1RLHuyQGa+Y
or28bamImGkpaNzBub9on7bNaBZs4YHY8ZUKPbSd8qsz/ka/hfatYUqttK2X
D56bNqkBS9nLSyto3zGMSJsO/ABpXuod+bSX8lfETTXXQx//XOwd2uH30s5O
aDbC9bQLSiG0/9hucRmLbobq+Zh6mLa3QJXNSG8raLyrnmtKuzefpTds8hm+
iWlYydE+4PJzLZXUDizjC75TsxQcW/gibDywE2KV3l58T7uj1MZztPkbWH+P
3u1NO3HZisM+Qj9gYkpLDGjvPdHh8EuzC3wsFZ8I066SPWk8FN0DAo3mj+Jm
KAjz19P1LOkFt4XpjD20sY6hyu/tA1nPEn0x2gUhscsGTAZAw8PFMfgPBSfb
mAuOew2CxjN9a23aKlrr/vYl8eFutIFM9zQFH7yZoyOBQ3Bw1PLUNtrmCv1f
hpt/wW2RzJHKKQpSbW0cck+MgHHxD0kX2nPO5dWfFBoFy5Yg6ZlJCkobz7yl
NMcgXeFGlzxtjYiFuYPRE9A899h+63EKYvI9VbIUJiG3ru9Z7RgFAx0f77uX
TIKyloOADe0HencSf/ZOQc6iTjuTUQrW9KuG9pn8gZjLc/qEf1FwZnnsbNqn
P8DQteN6D1PQbDzm7+Y1A3pXvTVbhyiIu/3coydpFiYHVZTuUhSEKj7M/BXI
QOv+xWsZgxRMNeveGGoWwJdSey5p9lBQqCns+HCDIOZ6PVjN6qb7J7pF+cBZ
Qby6QlTyfBcFv4wDyqpl5mLi83q9ku8U9GcV/3zgIoSHjFoPLOik4PPFrcbE
yHws1QuJ+NNM31+7qKikmTB+mSOe399EgcOW9uaqBGG0Dj9v3dhIQSP/vIee
vgjKOslU3/tIQS2zjCsRvABlr2yav+A9BWXqJlTlYlEU+bF6dvNrCs5fligO
chTFIo1a6z6SAsOu76G6eaJot/+n+G0eBUWJoavu71uMC1LnCY++pCBP6I1Z
0J0lOHUwLO1sMQX1Hgo2q5ctxcKawwe+PaaANHmYWpcigcK+DQ3iNyjYFJPd
N1EhgeVRBd9OXacgqeXZRhlKApdcmzfcGEuBv0dF4TEDSWTY8ZZGx1Cw8WZf
jWCDJDrGZvo1R9D19quMaQstR82zzgFfAuj+is0xS3SVwrNdnU/y2RS0txVe
LouWQrEHumaFTAp2KL56350vhTWibfwiewoUS+qYmxkrcWGnd+yTPRS0/fjl
UcNdicoakqoRO+j+09NOmK1chc8CzANT9Ol+6CjqdlaVxrQmz4FnyylgjHhx
K3dLY6TbQiUPSQp+zFO22uQnjZ0BMgWy4hRkbUzMmnkljWuOu70LFKVg2/kz
vlx7GWQ08wVWzKXgoLSBQG2ILGq8EnSsGeJDnVp7zJ0BOTQN83xtVMEHSfeD
GfNN5PHZtXaLWE8+KM//942tvTzeEUs6eMidD5jS/e3WcXm0uBt6T/MoH9xb
PFarxstj+oW0uxXOfCg3Dbxi2yWP5Prc0vp9fPCVvnXiVoQChhXsanA04MPH
2npNlZr1uBGExT3n8iFOw7zEZp8SumtlLHkUMwit3E1lw2JqmP8nKmz7rQGI
Sr3wXmClBob9Gx7p7PkTVsR/v3T97mZ00htXL9Doh4i9ltvqx7XRO15wJ071
gs+W/x2sDNHDqwZfH1683QOm1O8zJ77r4/wbClrnbbsh2HC30yq9rdi2w/hq
3KIu0H9868n5l4A9dlbz/PO+g/vkcFCFqBF2Nm6xQ/9vMKUi1q62zxj73OsF
Izd9BcPMR8kJCSZo538p6vufDhgWt3LczzPF7o2GXOOvX+DHFcf93vPNES++
XxJU2gaWlJ9ll44F7tKI+F7V0QoDh4R9nlzYjszU0I49Ai30e7NCIIJniWlZ
S3ue7m0C8XeKMTmUFf57cbDib1cDrInMttXRscbyOO9u+cCPwFXZIibhuhO7
5eRL9azqoWqVkfZIrA1WcFqLo/TrQH8N75p60y48dj7DxVXjAywWTPF1CrFF
u2Cx8JsPa0EmWNaQqbgbWelNz9dO14DIek6B3dvd+OBQr19aeDVs3Loy24+w
wywv5wPBdlXg3S5OWjH2oJdAx25TlUqgRq7ss+TuQc6RkLktehVgof4m0VJt
L6Y3kt12rm/hxYjB9ETtXix2XmPhkvwGTqhqfqpz2YdcNTehmtnXsJV/uIEp
sh/dbi8Sme/6GswUpHaKpuzHviKu6uRAOSgFXfbn6dqjAatk4EVYOSi7bHm5
/pM9Cj1fp6GsWA4uL9xCn3g54MFzujX3PpHA9+j3M/N1QCPVaRmfVhL8pd2P
N512QJvqh9YWLSRcDvS0mzzrgBmZYzq/GknI0T8tZxjugAaHBQ3s6kj4U3Cx
lEx0wG0DwUn6FSTEZSeN1pMOaL67ujK9gISXyQ2Hh5cx8dNzQ8H+GyR0Wq89
eFqKiZTPqy1j8SQwpjyY06uYqHnTbsMc2sa759sIyTGxKUNKc3UcCW/m6Ouu
VGZizqu8DvsYEmqc74kYbWOi/fI79iPhJHxSOPb42hEm5p+NV8zxJ2E07e+E
+jMm1tqn/KN2gITu/ebJl4qYmCETb+ZFkNAyN3r79xImCr59NPSUQ0KJ46pb
CWVMlBXQH0Q2CSFS2vozlUwsspH2JxxIEIs8Flj1mYnGmzdyc+xIUHVtZLgI
sHB5TKDccwsSDq3PFEncyUIr9UX3HTeTcOb1gWOKtiz86CExXKhJwjUX8eo8
Oxbqh7m+X0q79H7AlWp7Fqoczzd6vYkEScXtS2acWDi8efGo5ka6XsUuScfT
LBwt67bcsIEEZSVZOcV7LOwwUI67IEvCsPJ1nbwhFqa9qH/7SpSupwbNJEZY
aKIZv9qMdtkJ/h7fMRaGndJpr1hEQkyepZfObxZGPtPMrltI59NnPCoWZONg
dmpArwgJzpYea8nlbAwpun5OeR4JDa4WixoM2Zjx+F327CwPSkTGVmkDG18W
VHlepZ2SmbIhwYiNYSnBN+Von6RmzB3M2chK2CZtOsMDUb8nwZ93sXGB9o/p
q9M8MA9fO/HDmY21L+836k/yoDB1+utYJBtJnXnn24Z5oGPiO2EVxcZ1YePF
Z2g//TqwKDmajQqXJPatop0n065rFcfGM12LkllDPHjELYtOus3Gnz9iozr4
PEi+ErbF4jEbne5/iP79kweXfJfEcj+yUWciv9+nmwfCEpEPBhvZmO5w6oQM
7fBcRqlxCxtV1fdaVnbxIJQ/3D3wmY1r7mYJytE+79ZgaNTNRu6FzLC67zzw
5tzq7Ztko7bh6A3TrzxgmcqjgQwHd6mTqUc/82CmQXgxKcfBUnttBynayS78
Nit5DtrMHD3+to0H3eFFfiwlDn610clRpO1duSs7QJOD/zxem9XXyoPLNoEy
heYcJFrfGQc386DYofGPlicH+YSU/Vg9D4i+4qpSLw5qXlqTkE2bcSaZa+rL
wbzqIbVjtM1vH9faG8BB1X4N1846HtR/mePuc5GDdaY6vz984EG/88a23Jsc
NFVK8OHV8mC1R0TRxjIOruUqm3RV8SDm7xHtKB4He9cNrn9MWyDOPLennINp
Fbtt/Wj3FwilJ1dy8MkY++wC2sWMUK74R3o/ucPrtSrp84gP8hvv4uCeFzvS
49/ygFsSoP1iIYFNcnd3XirnwSIbZu6qxQQuvl7byKId1Kmn5idG4LJ/uMmq
tN2EJhU2LSPQfXr/zAeSB7q7TkumyBAY/3vr+zW0m755j4RpEPip8Xle2Sse
LFvgnrvTnsDAqX3uei95kGpy7swQk8Bje2MiRWlrnosxuc4hkCqtGv72ggc2
QzmNLU4E+u0IzoihHd40NnXInY73mGX3PefBZMoF4zPBBI7PhrRmldLxz9cW
SocS2KP6NyuCtuTylIaX4QTu/WNb40R706XyI0JXCMw0yupaTvuop0jUtQQC
DYUawkJLePDJ4PrHB5kEduWG23oU0/WdSr1j+ZjAsJoVmTtojz9+6jKQQ+Ct
IDdrZdri61omNAoI/OoX7txbxIMdwtJrnpcROCp3rNmVdmnDg8MfGwksYlYW
+RTywGpxodrpFgJPRb86up92i0XluFQbganzzhJbaI8W/4w80EngaadTSxi0
1f63Kauvn0ChHhfutWd0vk9Gp68MEtheb+Z0iraV5B5QHyLwS8RJdxbtIxGn
6nzHCNQqG9i+nvZoWXjiikkCbz79unIh7ZDfNw8V/yZQxcFNdbiA/jdppasS
MwQeuWUX1Ew7yaN47O9fArcGey97Qfv/DBC28w==
"]]},
Annotation[#,
"Charting`Private`Tag$81035#1"]& ]}}, {}, {}}, {{{{}, {},
TagBox[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1, 0.5, 0]],
LineBox[CompressedData["
1:eJwV13k8VF8UAHCEUAkVsobJTxIlZQn3WEokCfPGlImytNgKyRpJoRAqlVAk
iWxtsiaVohIhovQYsnvInvjd5p/5fD8+3r3vnHvPOSN3xNPKmYuDg4Pg5OD4
9z3VUfOGdvmN/szivw+FmlLF/Q1a01Elt078P8Oaz0fEWx8jqRzKeAFbtF2Y
X8i4DM2JyknOY/taZrcsaa1CRuF1q2axDz/5kL0Y8w7V75pRncQ2Fx0O/mP0
EfnVprqNYifrRmT9CapHiwlVHwewhUfEEmZbviB5Xad93dgX72QFTqs3o0T/
8Inv2POW2s6TMS2IS4xW1oTtxVVr8bvvG+KeMcr8gN335IDWmNF3pCre8/gV
9iHnQTkqtQPxXebreo59YlnFhakgEgkG5W/Nwf5ZZuE50dKFDi1E68djJ60R
c/Lm6UbHDlVPh2HbePy0HVfvQfJtkY3e2LWyJw1HY3pRVk3+uBX2BT8tTc/S
PtTyQWy7wb/4NHCojPT1o7O8Qsmq2M/D4tcMGQ0hV9Piz7zYJ9uZAq6nhtGT
Ox4pYwsU2qghv9ifOoJO1pbFtGPXezEnfgeNohew6esj7F20gR9jLePIxfkB
707sDEsL20KP3+iem2u/EjZn8OMvJ3kmUMnfHyPLsMuaA95R6pNIxL798Oe/
FNoSsaxwOGYatb+91rcHO/aJ58Zc2gxqlVTuVMIe+tl43610BtFyo+a5sTO1
kpMG+2YRn1zR7ZJ5CkkNqIT3G82jsz16QZLYAaLxC1lt84jkuXF57A+FWgwn
/Y6d+ovMBb+XV2Mn3C53701dQCt8dC97YIcrPsgZD+KAOLGOmidzFJpt0bw+
2sIFbRZq7atnKfRCnc/hwYYlcMyZdrh1Bp+fmFblQ4FLgD83i52EPW7oX/lB
hhvmNM52SGEP5JYMZjrzAEGDR6unKfT9vJ4h6/dSeBpzL79xAuevY8WK1Tv5
oKclmCsC21a7o6U2kQ+EWr2ttLGbR866a+nwg1ZyW3/SbwrVMStvrjonAHmN
+dP7xylUqWZE1QiuAImemptXKAqdvbSqJNRhBSje2V2ljq3bww7XfLwCBILj
+ptGKFScFC5xny4Ij4JztohiP+ap3hmavBI4C50eRg9R6Is7zUJyjTAseHIY
mvZT6LXRg4yG9FWQY+d/hrOLQptj8/un36+CWIuAN9GdFEptLVKVoVbBkEvH
FjFsP/f3L07sWA33jLg9NpAUUr3R/3FJ02qQytB2N+rA7zuwcXIbjygc/731
6t42fL7iC3YmHRWHA/MvO0saKNTR/uJSZYw4GDoYE8rYexRfff71RBzWfpof
ullPIcXSBuZWjrVwer/ZOe/PFGrvHnf/eHMtZFvLmch8wudPa1viQo0EvNc/
QJi9x+fhZ/GvIyrSoDrTPD9fTiGO36du1uyXBr2RoB022N28ymabz0jDyXSR
B9llFMpVTcr9+0oa9qRa8dBLKaR/NsDnJkMG7urRyDsvKGQvvYOrLkwWPGOt
ZAWfUKhhU0ds8tA6WPcr0WzvAwq90Szp3be4Du7ufr/nUia+TwaJsEREDr6w
6UHV9/H70y3Gj2vKgYfZN1fdDAodCa6ga4bJwXH7uosyafj8fEyV+iImD1cy
FV+WJlFotZt99lIjBVBa/6rxQAyFlJfeq7ZkKMC4ycf/XKPx/U3/1XXLVQFs
xZKjAi5TyK3VXVLlmgKsDuU6kxiF92McFG3ZowABfvrzVRco5CN9y+NWBA0K
7H0/jARTqLHui/rGj+vBfGTLwQR3fB+27Cq1oCuB7vv0a0JmFFJrZ5roHVOC
KrKNObubQh/D3Rs3BioBTfO0dacJhXhbrw3ypSnBgQWz7rydFAo8y5Z8PaQE
E2daQ8CAQk4fQoM0wzdAVHt+sZ4WhbY7l+qte6IMhbnBomnrKfTt5ubKMaFN
kIzYuSILI+hyRshnrrVbYE2shehEyggSu8aOupqyFbijv9kfUR9BETam+l+m
toFXuOfL+aph5K2dZl8TpgWyF5XP8aBhZEzNBXiwdSBPhjNfp2QIndPdf1hC
Sw92a6QNTqgNIZ28W0/PvkTAbRPlNxo/iNxmxkLfrzCAhU1CG1fMDKDZjUId
m+iGsCth8LbPngGkm/PobmKiEXRbvQ71SelHYyJmDkSVMbi5RQyYzfSh7mgH
wmvpLphovm2+36gPmVJnTHu2mwBFPv7VfasXDTnyeT8N2Q2jTlcW5dm/cH0U
44qoMoXo1Zs/DG35hUQ+KcYWUGbwwPJB3KcrPUgqMt9y+3ZzEHN4uquhuxvd
3KgttOroXnBPUVpoNutGtRIG237HW8CdczMxuiVspCNVFaf2dR9crvgsnLye
jQSXpPscDrMEj0pVvfv3upDMOVldpuJ+uCUVpmMn14X419s9t3q3H+K9x/zl
cjuRqt7a/DMsKyhRNx0c29OJvDpEXptxWIOtL+9sPEWi99V25dlc1lAofijN
eoREMvmZRQI81lC07ImQ6DCJakN0HtXyWwNPIGmcMkAiebkj181WWYP91zVL
n/WQqMGx8KiZojW828wjLPCdRJv79y03M7eGSy67/ttTQyLqdzTd9KY1CJzu
9t2cSaLvrWlESpI1hN4/r6h8Hz+//DljLNkaEm6Ip9AySJQRQTJvpVlDkGbC
T8l0Eh2Q1DjUn20NLsvflq1KJdFbw3aXqHJreLa8n1JKJNHt+A1+NV3WwLnY
ON5/kUSRvvr+0j3WMLhC5tn8BRL5HrQOONVrDV47HxoIYVuuDw5aO4TXF+gt
1j5PIt7i+tDjk9a4nj3fkBhColPkmSh+PhvY+mOl1Gk/EpmoVSeZbrIB+5Hs
8Q8nSGTLu9umXs0GaCkZar+Ok+jEj5oVDHUb0Ek3OMSJHXv5U6iTpg3s9WqJ
0zlKoq+9TS4hBjbg2R9h8cKRRE532erP6DYQYW5i3GlHojBhzg/rztpAgbpL
c/8+El3rCwt/EGoDSYvZgfLYmS+59VXP20B2Wq+onQWOlztf4Y5IGwhckqPy
xZxEwrUrbxAJNnCuh6e1xpREd8NkHKMzbSBvA49RrxGJKn7v+DNdZwML1dnL
2rVIlPax6Ih1gw24eHG+0sMOv7+1Nq8Rr1coYpGmSSJTxsZbzq020HA7izqx
nURNJRKajZ02wN/sa8WnQaKBc7NeeRM2IF0+meGqRiJRoaIBJwk6nEk5Pdik
SKLZPnWrSik6zDzdVGSF/f1VXrGkLB2ubo23a1iP1/fOjPyiQIfNzASNBhqJ
VFquK8ImOjytWpRolyeRYarPEUmgw/aQvZ/EZEnkoaLe1uBMhz9/BOW2iZPo
9LTEnP0xOmh9OnjnrRiJgqqWSIycoIP8+32yDOzLts1MgZN0KLVzpgWLkigr
3O+bYQAdKl++N25eTaKu7xWtT2LpsO+hyMAzYRL1P3gwYxBPh/ur5KMI7FGv
OPH6q3Qo25utPCNEokW+I7ZDN+lgLEU/rY8ttY2nlXaPDk4sO+UWQRIRMXta
rhfRYVBzqbT2chKxbDWmFUroUMvxt69/Gc63grTY4zI6xDGlXtzG9i4eIepe
0WHr8UV7Luy4nvivvB/pcCnGuaWdn0Q3CgKmrtXRwdC0qPwadmqgo6hCAx1i
bpx9YIGdK7yNQF/p0Okff+EtHz4Peq3NZ0g6DP0tdnu5FN9HvleTPGy8/x/Z
nqHYrY0P11zrwfEWpvsaYvceD6QXDNAh+edEbA0vibgTZZr7JujQ9XX7CJuH
RHojTk1MfgJ2R/49YcqN81tqkl62jAAxxYPl0tgjEconZQUJaFa7Mj6+BO9P
bnRZjwgBSu4xPHexF2wCjU5KEXCAcbiOG/ur3CHhRhkCln8a0yS5SJQ3Aj+3
yRHAOxQYXoZ9KJI38M96AiZ7oqvPYL8sjX98UY2AtxEC1AwniW5G+oT2b8Hr
P2842Y59ks6wMNcg4MfZ/OYK7HWU1ICwNgHR/qW7I7FnSheLfHYQQBRThAd2
fWTXhRY97Pxdu+nYofJZcimGBJx6c7RpPbYtdYlaNCbgzX+aniuxN5e5lx8x
IaC4ZuvwLAeJSPpWppI5ARm6FQkN2C/kRf+7bEGAVKRlSQV2HDUzMWxJgN7S
tW8fYRtEVcQ9oRMgHWoTfhlbgkg7JGpLwD3lD1pB2OPy4Sr+BwiwPxFS745d
S7nMtdsRkNXqtccBO73M9L2+PQHJk5kPrbEDolQS0w4ToKAkPWiCbUWsdOJ2
IqCv/OtKPWxlhfEtR10IcBhsEtuKzTXatFhzjIB3H8SXKGO3lRV9UnHF+zl8
r0EO+3FU0u0r7gSoXDt9XgL7EhF8fNyTgPMaceKrsY8oOGjSvQjwm/kdJ4it
M2rI88KHAMXgtCF+bJHy9Y0SZwg4uevWRl7sgSi+tGB/AhYr2vcuwX5NDHqQ
gQQYaB235sROVqjTNTpLgOuAgS4Hts9ogUBmKAH+E858/2xefrWV7zwBm+ya
i/6Zdsk30/UCASsE48y4sOcJpk9dBAFHf1yv5MZuUtA13HKJAMvwX2v5sB+N
yghdiyYg/d45Yjl2eDlnx1QsAfNVLr7C2HaXunOY8QRUW173F8PWYLzzL7uK
10tf7iCDvZyWbSKbSADt94cNitjdo9Frwm4S4Ozy5asqdlm5J7s7iQAvHtmj
WtjXLlkVmqQQEFdZ0GaIvZMmvndFOgHcdamuB7CfDr+Vc8ogQFR/1vjov/cp
8p4qySTgk+yrGR9sbrPPd47lECC++yqV8C8eq4J9XuYS4GiXpH4Pm/1d2VS0
gICqYD7Lp9hVnhfHXz8loCNMROIbtrq2xjuJIgLG/LOrh7DTuLpunyomoDIj
bS/nv/N9XW+nbAXOR2nGgAq2funEjYB3eP89JQ6x2Hnh6W4NNQRMCQuQWdjS
FpYGSh8J8D6cof0Ge57MGWiux/nJzAv8i13C66i3pY2AZ3ZVOgH4firXC4lE
fieAp3VV9G3sW7cqfnV0EKB1NbGoHNtPRSIumo3Ph7Rcyr/7v92qoat3CMen
qCMtGTtTMqRInyJAW2DfmzfYa3pUoq+PEZDUV185jD1xJnKb0RS+n4+nTQxx
vXmcgiJTF3E86ftjJ7Hljw7bTXIyQCykLpSG61X85ttbzLkZUJWnudcG++Tr
qbZZPgYkpBd7P8dW68/dRBdhwNdDvVPhuN6lPj7I9Wg1A7LaN78o4f33u5u/
hUuMAW18O6zHsEcEnUMLJBmwRyhA9DCul480pBqXrWeAJtdcvRmut0qhl/yq
NBkwUOohZCKAz8eO+zzmOgz4r3nHhjhsy+mXCc26DIhxemXQhu3nMfmoz4AB
hQn1p07hev/ezqFT0JwBRZ3jH3Nwvzimvd3soAMD0ooDXSxX4vhPWLZ0H2GA
lpCq70PsuAJXJw9n/He+yfAluP+8+C/t7LkTDLCPvHqnBJtPdPmTBz4MKHGu
e6chQqKH452SE5EM0HmW/812Dc5/3nxW8GUGPKxd2/wK+8txse1LYxkw9bCp
biPuj3OkuaXEVQaMnFpazoX7p9nnonBIYcCKn91hZbjfDuTEDEcXMiDSXCPL
Xgrn31n75fo2HM/Xu0Ydcf++Im8xd/47A4x7A3zY2BM/j2zr6mDAi58xTY64
31cciM5JZTPg+ypxpaN4HrCy/HlDbJgBVzJUJf2USOS/48JJfg5bCD6bSnut
guMj3CA3vN4WkiI9mX+3kWjT5x67PUq2cEEjSPcmnkcSouduPFS2BVtFv9mt
eF6xW0oTdFGzhedZsxweeJ6h5n3nOrRsQSQWjId0cP/qk2qs34P9JyBaGEjk
XHEs/OkpW/g8++jeghnOt/vAmZ0++P8Vb/W83oPzJe3m+tXXFvrZJbRLeL66
FORpNRNoC1dktZPW4vmrQMd3ne5FW3D9vc/eeD/O1/PzZa+TbKGAmNapYeD9
5adOfHltC8tClgdcccb97G6T09gaJoQQBWVLw3E/MZez9xVnQkUDrZAXz6Mc
s+7MPxJM8Lp4NYEXz6+G+5da8KxjwpdmUpI/kkTVnDqaa5WZ8Ht7ufHaaBJ9
PHKH30CfCRkOqo3O13B9p53Ii3NhQi7n+bk8PE9PZC1OqxUxYd2dc/WztST6
Rey6G1XMBM3lAn3SH/E8wB2zm13KBH5tuWrDTyQqdZC4lVjJBPPE4ObYz3ge
Fd+m87eGCddEfPU2N5FIKPJEUO13JgyUs0Rv/sDz2tFmDmeuA2BXfWLpn1ES
Oa7P4U/aewCU04KCeCU60Zjy1e2PRw+A4MovabTgTvQi40/nZORBCIn/wb7R
04kOGCvADhk7sPM+OONFdCFJ94hi1Uo70Hsi+V9JexdaI+BWuJfBgtieNyL2
h9kowyg4YJTJAqJQtKrakY3Ug2ONrtqxQPD+TmE1FzayGC1obj3Mgnyu4RhO
Vza6+HVy1tGNBb2NOtO5Pmw0kx5iGHCOBQm4B9Ii2ahtx9XGzBwWLMrY2IXn
s9Gx0xnJpnksqFEadVwsZKOpvGfOQwUsEJmt5wh8ykYi8q3TW56zIOwM36x3
MRvt4ZOWKq9kgc/en9/cXrNRWVOmU2MzCx58cxcOaGEjM8EXm3xbWbBf5LPx
wjc2ajWpmRJvZ0HUZgG+89/ZaKJkMPIQyYLsJwW6sZ1stCltc27/AAteFajQ
cwbx89oMfKOHWfAs4MPfrSP4eautkdooC9zsI7aWj7KRS8TpBp9JFhRmThk3
TOLnVV5MEpthgePorKzdDBuFzd1wLJljgb5CycXeOTYS0niowvrLApclP/28
/7JRqnvJ5OIiC2iGQlOLi2z0P4FwUQU=
"]]},
Annotation[#,
"Charting`Private`Tag$81088#1"]& ]}}, {}, {}}, {{}, {{{}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.012833333333333334`],
AbsoluteThickness[1.6],
GrayLevel[0]], {
PointBox[{{15., 2.275322145494491}, {30., 0.9665618315289962}, {
35., 0.5626785626846428}, {45., 0.42750539480160143`}, {55.,
0.3284281013675751}, {60., 0.281311498028553}, {70.,
0.221686884629368}, {85., 0.1734161044542117}, {95.,
0.1568557121193523}, {105., 0.1567776309510195}, {115.,
0.1516721318391826}}], {{
LineBox[{{15., 2.3589614509768646`}, {15.,
2.1916828400121178`}}],
LineBox[{
Offset[{1.5, 0}, {15., 2.3589614509768646`}],
Offset[{-1.5, 0}, {15., 2.3589614509768646`}]}],
LineBox[{
Offset[{1.5, 0}, {15., 2.1916828400121178`}],
Offset[{-1.5, 0}, {15., 2.1916828400121178`}]}]}, {
LineBox[{{30., 1.004301966654747}, {30., 0.9288216964032454}}],
LineBox[{
Offset[{1.5, 0}, {30., 1.004301966654747}],
Offset[{-1.5, 0}, {30., 1.004301966654747}]}],
LineBox[{
Offset[{1.5, 0}, {30., 0.9288216964032454}],
Offset[{-1.5, 0}, {30., 0.9288216964032454}]}]}, {
LineBox[{{35., 0.5945210152570578}, {35., 0.5308361101122278}}],
LineBox[{
Offset[{1.5, 0}, {35., 0.5945210152570578}],
Offset[{-1.5, 0}, {35., 0.5945210152570578}]}],
LineBox[{
Offset[{1.5, 0}, {35., 0.5308361101122278}],
Offset[{-1.5, 0}, {35., 0.5308361101122278}]}]}, {
LineBox[{{45., 0.4424170882975329}, {45.,
0.41259370130566997`}}],
LineBox[{
Offset[{1.5, 0}, {45., 0.4424170882975329}],
Offset[{-1.5, 0}, {45., 0.4424170882975329}]}],
LineBox[{
Offset[{1.5, 0}, {45., 0.41259370130566997`}],
Offset[{-1.5, 0}, {45., 0.41259370130566997`}]}]}, {
LineBox[{{55., 0.34257749668809584`}, {55.,
0.3142787060470544}}],
LineBox[{
Offset[{1.5, 0}, {55., 0.34257749668809584`}],
Offset[{-1.5, 0}, {55., 0.34257749668809584`}]}],
LineBox[{
Offset[{1.5, 0}, {55., 0.3142787060470544}],
Offset[{-1.5, 0}, {55., 0.3142787060470544}]}]}, {
LineBox[{{60., 0.2950856909801826}, {60.,
0.26753730507692336`}}],
LineBox[{
Offset[{1.5, 0}, {60., 0.2950856909801826}],
Offset[{-1.5, 0}, {60., 0.2950856909801826}]}],
LineBox[{
Offset[{1.5, 0}, {60., 0.26753730507692336`}],
Offset[{-1.5, 0}, {60., 0.26753730507692336`}]}]}, {
LineBox[{{70., 0.23440287565683912`}, {70.,
0.20897089360189688`}}],
LineBox[{
Offset[{1.5, 0}, {70., 0.23440287565683912`}],
Offset[{-1.5, 0}, {70., 0.23440287565683912`}]}],
LineBox[{
Offset[{1.5, 0}, {70., 0.20897089360189688`}],
Offset[{-1.5, 0}, {70., 0.20897089360189688`}]}]}, {
LineBox[{{85., 0.17745347943326226`}, {85.,
0.16937872947516117`}}],
LineBox[{
Offset[{1.5, 0}, {85., 0.17745347943326226`}],
Offset[{-1.5, 0}, {85., 0.17745347943326226`}]}],
LineBox[{
Offset[{1.5, 0}, {85., 0.16937872947516117`}],
Offset[{-1.5, 0}, {85., 0.16937872947516117`}]}]}, {
LineBox[{{95., 0.1649558656153517}, {95.,
0.14875555862335288`}}],
LineBox[{
Offset[{1.5, 0}, {95., 0.1649558656153517}],
Offset[{-1.5, 0}, {95., 0.1649558656153517}]}],
LineBox[{
Offset[{1.5, 0}, {95., 0.14875555862335288`}],
Offset[{-1.5, 0}, {95., 0.14875555862335288`}]}]}, {
LineBox[{{105., 0.16135927423943697`}, {105.,
0.152195987662602}}],
LineBox[{
Offset[{1.5, 0}, {105., 0.16135927423943697`}],
Offset[{-1.5, 0}, {105., 0.16135927423943697`}]}],
LineBox[{
Offset[{1.5, 0}, {105., 0.152195987662602}],
Offset[{-1.5, 0}, {105., 0.152195987662602}]}]}, {
LineBox[{{115., 0.15846823981034214`}, {115.,
0.14487602386802306`}}],
LineBox[{
Offset[{1.5, 0}, {115., 0.15846823981034214`}],
Offset[{-1.5, 0}, {115., 0.15846823981034214`}]}],
LineBox[{
Offset[{1.5, 0}, {115., 0.14487602386802306`}],
Offset[{-1.5, 0}, {115.,
0.14487602386802306`}]}]}}}}, {}}}, {}, {}, {}, {}}}, {
PlotRange -> {{2.5, 124}, {0.055, 1.05}}, AxesOrigin -> {0, 0},
AspectRatio -> 1, Frame -> {True, True, False, False}, FrameLabel -> {
FormBox["\"Angle / Degree\"", TraditionalForm],
FormBox["\"Cross Section ( Normalized )\"", TraditionalForm]},
LabelStyle -> {FontSize -> 12}, DisplayFunction -> Identity,
Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0.14620185897093477`}, FrameTicks -> {{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0.14620185897093477`},
DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{0, 120}, {0.14620185897093477`, 0.9999999999999969}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],FormBox[
TemplateBox[{"\[ThinSpace]", "\" \"",
FormBox[
TemplateBox[{"\"Klein-Nishina\""}, "LineLegend",
DisplayFunction -> (StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {
"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {"Columns" -> {{0.8, 0.5}}}], "Grid"]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
False,
GridBoxDividers -> {"Columns" -> {{None}}, "Rows" -> {{None}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {"Columns" -> {{0}}, "Rows" -> {{1}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
"RGBColor[0.368417, 0.506779, 0.709798]"], Appearance ->
None, BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
"}"}], ",",
RowBox[{"{", #, "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Row\""}]}], "]"}]& ),
Editable -> True], TraditionalForm],
FormBox[
TemplateBox[{"\"Thomson\""}, "LineLegend",
DisplayFunction -> (StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1, 0.5, 0]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1, 0.5, 0]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},