forked from salimt/Courses-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweek4.py
387 lines (318 loc) · 16.9 KB
/
week4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
"""
@author: salimt
"""
import random
"""
The functions in Motif.py will return 0 for an entire motif probability even if only
one of the positions has a 0 probability of existing in the consensus string.
This doesn't make sense because a motif that differs from the consensus string
at every position will also get a total probability of 0.
In order to improve this unfair scoring, bioinformaticians often substitute zeroes
with small numbers called pseudocounts.
"""
# Input: String Text, an integer k, and profile matrix Profile
# Output: String of most probable pattern
def ProfileMostProbableKmer(text, k, profile):
maxProb = Pr(text[0:k], profile)
maxMotif = text[0:0+k]
for i in range(1, len(text)-k+1):
tempProb = Pr(text[i:i+k], profile)
if tempProb > maxProb:
maxProb = tempProb
maxMotif = text[i:i+k]
return maxMotif
# Input: A set of kmers Motifs
# Output: CountWithPseudocounts(Motifs)
def CountWithPseudocounts(Motifs):
t = len(Motifs)
k = len(Motifs[0])
initialList = {i: [0]*k for i in "ACGT"}
for i in range(k):
for j in range(t):
initialList[Motifs[j][i]][i] = initialList.get(Motifs[j][i])[i]+1
initialList = {k: [initialList.get(k)[i]+1 for i in range(len(v))] for k,v in initialList.items()}
return initialList
"""
ProfileWithPseudocounts(Motifs) that takes a list of strings Motifs as input and
returns the profile matrix of Motifs with pseudocounts as a dictionary of lists
"""
# Input: A set of kmers Motifs
# Output: ProfileWithPseudocounts(Motifs)
def ProfileWithPseudocounts(Motifs):
t = len(Motifs)
k = len(Motifs[0])
profile = {} # output variable
countMotifs = CountWithPseudocounts(Motifs)
for key,val in countMotifs.items():
profile[key] = [i/(t+4) for i in val]
return profile
# motif1 = "AACGTA"
# motif2 = "CCCGTT"
# motif3 = "CACCTT"
# motif4 = "GGATTA"
# motif5 = "TTCCGG"
# motifs = [motif1, motif2, motif3, motif4, motif5]
#
# print(ProfileWithPseudocounts(motifs))
"""
Write a function GreedyMotifSearchWithPseudocounts(Dna, k, t) that takes a list
of strings Dna followed by integers k and t and returns the result of running
GreedyMotifSearch, where each profile matrix is generated with pseudocounts
"""
# Input: A list of kmers Dna, and integers k and t (where t is the number of kmers in Dna)
# Output: GreedyMotifSearch(Dna, k, t)
def GreedyMotifSearchWithPseudocounts(Dna, k, t):
BestMotifs = [Dna[i][0:k] for i in range(0, t)]
for i in range(len(Dna[0])-k+1):
Motifs = []
Motifs.append(Dna[0][i:i+k])
for j in range(1, t):
P = ProfileWithPseudocounts(Motifs[0:j])
Motifs.append(ProfileMostProbableKmer(Dna[j], k, P))
if Score(Motifs) < Score(BestMotifs):
BestMotifs = Motifs
return BestMotifs
# Input: A set of kmers Motifs
# Output: A consensus string of Motifs.
def Consensus(Motifs):
finalMotif = []
motifCounts = CountWithPseudocounts(Motifs)
for i in range(len(Motifs[0])):
maxVal = 0
motif = ""
for k,v in motifCounts.items():
if v[i] > maxVal:
maxVal = v[i]
motif = k
finalMotif.append(motif)
return "".join(finalMotif)
# Input: A set of k-mers Motifs
# Output: The score of these k-mers.
def Score(Motifs):
consensus = Consensus(Motifs)
motifCounts = CountWithPseudocounts(Motifs)
score = [len(Motifs)-motifCounts.get(consensus[i])[i] for i in range(len(Motifs[0]))]
return sum(score)
# Input: String Text and profile matrix Profile
# Output: Probability value
def Pr(Text, Profile):
score = [Profile.get(Text[i])[i] for i in range(len(Text))]
product = 1
for x in score:
product *= x
return product
# k = 3
# t = 5
# Dna = ["GGCGTTCAGGCA", "AAGAATCAGTCA", "CAAGGAGTTCGC", "CACGTCAATCAC", "CAATAATATTCG"]
# print(GreedyMotifSearchWithPseudocounts(Dna, k, t))
# Input: A profile matrix Profile and a list of strings Dna
# Output: Profile-most probable k-mer from each row of Dna
def Motifs(Profile,k, Dna):
return [ProfileMostProbableKmer(dna,k,Profile) for dna in Dna]
# Profile = {'A': [0.8, 0.0, 0.0, 0.2],
# 'C': [0.0, 0.6, 0.2, 0.0],
# 'G': [0.2, 0.2, 0.8, 0.0],
# 'T': [0.0, 0.2, 0.0, 0.8]}
#
# Dnas = ["TTACCTTAAC", "GATGTCTGTC", "ACGGCGTTAG", "CCCTAACGAG", "CGTCAGAGGT"]
#
# print(Motifs(Profile, Dnas))
# Input: A list of strings Dna, and integers k and t
# Output: RandomMotifs(Dna, k, t)
# HINT: You might not actually need to use t since t = len(Dna), but you may find it convenient
def RandomMotifs(Dna, k, t):
randMotifs = []
for dna in Dna:
randomNum = random.randint(1, abs(k-t))
randMotifs.append(dna[randomNum: randomNum+k])
return randMotifs
#
# Dnas = ["TTACCTTAAC", "GATGTCTGTC", "ACGGCGTTAG", "CCCTAACGAG", "CGTCAGAGGT"]
# k = 3
# t = len(Dnas)
# print(RandomMotifs(Dnas, k, t))
# Input: Positive integers k and t, followed by a list of strings Dna
# Output: return a list of random kmer motifs
def RandomizedMotifSearch(Dna, k, t):
M = RandomMotifs(Dna, k, t)
BestMotifs = M
while True:
Profile = ProfileWithPseudocounts(M)
M = Motifs(Profile,k, Dna)
if Score(M) < Score(BestMotifs):
BestMotifs = M
else:
return BestMotifs
#Dna = ["GCGCCCCGCCCGGACAGCCATGCGCTAACCCTGGCTTCGATGGCGCCGGCTCAGTTAGGGCCGGAAGTCCCCAATGTGGCAGACCTTTCGCCCCTGGCGGACGAATGACCCCAGTGGCCGGGACTTCAGGCCCTATCGGAGGGCTCCGGCGCGGTGGTCGGATTTGTCTGTGGAGGTTACACCCCAATCGCAAGGATGCATTATGACCAGCGAGCTGAGCCTGGTCGCCACTGGAAAGGGGAGCAACATC",
#"CCGATCGGCATCACTATCGGTCCTGCGGCCGCCCATAGCGCTATATCCGGCTGGTGAAATCAATTGACAACCTTCGACTTTGAGGTGGCCTACGGCGAGGACAAGCCAGGCAAGCCAGCTGCCTCAACGCGCGCCAGTACGGGTCCATCGACCCGCGGCCCACGGGTCAAACGACCCTAGTGTTCGCTACGACGTGGTCGTACCTTCGGCAGCAGATCAGCAATAGCACCCCGACTCGAGGAGGATCCCG",
#"ACCGTCGATGTGCCCGGTCGCGCCGCGTCCACCTCGGTCATCGACCCCACGATGAGGACGCCATCGGCCGCGACCAAGCCCCGTGAAACTCTGACGGCGTGCTGGCCGGGCTGCGGCACCTGATCACCTTAGGGCACTTGGGCCACCACAACGGGCCGCCGGTCTCGACAGTGGCCACCACCACACAGGTGACTTCCGGCGGGACGTAAGTCCCTAACGCGTCGTTCCGCACGCGGTTAGCTTTGCTGCC",
#"GGGTCAGGTATATTTATCGCACACTTGGGCACATGACACACAAGCGCCAGAATCCCGGACCGAACCGAGCACCGTGGGTGGGCAGCCTCCATACAGCGATGACCTGATCGATCATCGGCCAGGGCGCCGGGCTTCCAACCGTGGCCGTCTCAGTACCCAGCCTCATTGACCCTTCGACGCATCCACTGCGCGTAAGTCGGCTCAACCCTTTCAAACCGCTGGATTACCGACCGCAGAAAGGGGGCAGGAC",
#"GTAGGTCAAACCGGGTGTACATACCCGCTCAATCGCCCAGCACTTCGGGCAGATCACCGGGTTTCCCCGGTATCACCAATACTGCCACCAAACACAGCAGGCGGGAAGGGGCGAAAGTCCCTTATCCGACAATAAAACTTCGCTTGTTCGACGCCCGGTTCACCCGATATGCACGGCGCCCAGCCATTCGTGACCGACGTCCCCAGCCCCAAGGCCGAACGACCCTAGGAGCCACGAGCAATTCACAGCG",
#"CCGCTGGCGACGCTGTTCGCCGGCAGCGTGCGTGACGACTTCGAGCTGCCCGACTACACCTGGTGACCACCGCCGACGGGCACCTCTCCGCCAGGTAGGCACGGTTTGTCGCCGGCAATGTGACCTTTGGGCGCGGTCTTGAGGACCTTCGGCCCCACCCACGAGGCCGCCGCCGGCCGATCGTATGACGTGCAATGTACGCCATAGGGTGCGTGTTACGGCGATTACCTGAAGGCGGCGGTGGTCCGGA",
#"GGCCAACTGCACCGCGCTCTTGATGACATCGGTGGTCACCATGGTGTCCGGCATGATCAACCTCCGCTGTTCGATATCACCCCGATCTTTCTGAACGGCGGTTGGCAGACAACAGGGTCAATGGTCCCCAAGTGGATCACCGACGGGCGCGGACAAATGGCCCGCGCTTCGGGGACTTCTGTCCCTAGCCCTGGCCACGATGGGCTGGTCGGATCAAAGGCATCCGTTTCCATCGATTAGGAGGCATCAA",
#"GTACATGTCCAGAGCGAGCCTCAGCTTCTGCGCAGCGACGGAAACTGCCACACTCAAAGCCTACTGGGCGCACGTGTGGCAACGAGTCGATCCACACGAAATGCCGCCGTTGGGCCGCGGACTAGCCGAATTTTCCGGGTGGTGACACAGCCCACATTTGGCATGGGACTTTCGGCCCTGTCCGCGTCCGTGTCGGCCAGACAAGCTTTGGGCATTGGCCACAATCGGGCCACAATCGAAAGCCGAGCAG",
#"GGCAGCTGTCGGCAACTGTAAGCCATTTCTGGGACTTTGCTGTGAAAAGCTGGGCGATGGTTGTGGACCTGGACGAGCCACCCGTGCGATAGGTGAGATTCATTCTCGCCCTGACGGGTTGCGTCTGTCATCGGTCGATAAGGACTAACGGCCCTCAGGTGGGGACCAACGCCCCTGGGAGATAGCGGTCCCCGCCAGTAACGTACCGCTGAACCGACGGGATGTATCCGCCCCAGCGAAGGAGACGGCG",
#"TCAGCACCATGACCGCCTGGCCACCAATCGCCCGTAACAAGCGGGACGTCCGCGACGACGCGTGCGCTAGCGCCGTGGCGGTGACAACGACCAGATATGGTCCGAGCACGCGGGCGAACCTCGTGTTCTGGCCTCGGCCAGTTGTGTAGAGCTCATCGCTGTCATCGAGCGATATCCGACCACTGATCCAAGTCGGGGGCTCTGGGGACCGAAGTCCCCGGGCTCGGAGCTATCGGACCTCACGATCACC"]
#
## set t equal to the number of strings in Dna, k equal to 15, and N equal to 100.
#t=len(Dna)
#k=15
#N=100
## Call RandomizedMotifSearch(Dna, k, t) N times, storing the best-scoring set of motifs
## resulting from this algorithm in a variable called BestMotifs
#M = RandomizedMotifSearch(Dna, k, t)
#BestMotifs = M
#for i in range(N):
# if Score(M) < Score(BestMotifs):
# BestMotifs = M
## Print the BestMotifs variable
#print(BestMotifs)
## Print Score(BestMotifs)
#print(Score(BestMotifs))
"""
The function should divide each value in Probabilities by the sum of all values
in Probabilities, then return the resulting dictionary
"""
# Input: A dictionary Probabilities, where keys are k-mers and values are the
# probabilities of these k-mers (which do not necessarily sum up to 1)
# Output: A normalized dictionary where the probability of each k-mer was
# divided by the sum of all k-mers' probabilities
def Normalize(Probabilities):
sumProb = sum(Probabilities.values())
output = {k: v/sumProb for k,v in Probabilities.items()}
return output
# Probabilities = {'A': 0.15, 'B': 0.6, 'C': 0.225, 'D': 0.225, 'E': 0.3}
# print(Normalize(Probabilities))
"""
This function takes a dictionary Probabilities whose keys are k-mers and whose
values are the probabilities of these k-mers. The function should return a
randomly chosen k-mer key with respect to the values in Probabilities
"""
# Input: A dictionary Probabilities whose keys are k-mers and whose values are the probabilities of these kmers
# Output: A randomly chosen k-mer with respect to the values in Probabilities
def WeightedDie(Probabilities):
rand = random.uniform(0, 1)
for k,v in Probabilities.items():
rand-=v
if rand<=0:
return k
# Probabilities = {'AA': 0.2, 'AT': 0.4, 'CC': 0.1, 'GG': 0.1, 'TT': 0.2}
# print(WeightedDie(Probabilities))
"""
Now that we can simulate a weighted die roll over a collection of probabilities
of strings, we need to make this function into a subroutine of a larger function
that randomly chooses a k-mer from a string Text based on a profile matrix profile
"""
# Input: A string Text, a profile matrix Profile, and an integer k
# Output: ProfileGeneratedString(Text, profile, k)
def ProfileGeneratedString(Text, profile, k):
n = len(Text)
probabilities = {}
for i in range(0,n-k+1):
probabilities[Text[i:i+k]] = Pr(Text[i:i+k], profile)
probabilities = Normalize(probabilities)
return WeightedDie(probabilities)
"""
RandomizedMotifSearch may change all t strings in Motifs in a single iteration.
This strategy may prove reckless, since some correct motifs (captured in Motifs)
may potentially be discarded at the next iteration.
GibbsSampler is a more cautious iterative algorithm that discards a single k-mer
from the current set of motifs at each iteration and decides to either keep it
or replace it with a new one.
"""
def GibbsSampler(Dna, k, t, N):
Motifs = RandomMotifs(Dna, k, t)
BestMotifs = Motifs
for i in range(1,N):
i = random.randint(0,t-1)
Profile = ProfileWithPseudocounts(Motifs)
Mi = ProfileGeneratedString(Dna[i], Profile, k)
if Score(Motifs) < Score(BestMotifs):
BestMotifs = Motifs
else:
return BestMotifs
#Dna =["GCGCCCCGCCCGGACAGCCATGCGCTAACCCTGGCTTCGATGGCGCCGGCTCAGTTAGGGCCGGAAGTCCCCAATGTGGCAGACCTTTCGCCCCTGGCGGACGAATGACCCCAGTGGCCGGGACTTCAGGCCCTATCGGAGGGCTCCGGCGCGGTGGTCGGATTTGTCTGTGGAGGTTACACCCCAATCGCAAGGATGCATTATGACCAGCGAGCTGAGCCTGGTCGCCACTGGAAAGGGGAGCAACATC", "CCGATCGGCATCACTATCGGTCCTGCGGCCGCCCATAGCGCTATATCCGGCTGGTGAAATCAATTGACAACCTTCGACTTTGAGGTGGCCTACGGCGAGGACAAGCCAGGCAAGCCAGCTGCCTCAACGCGCGCCAGTACGGGTCCATCGACCCGCGGCCCACGGGTCAAACGACCCTAGTGTTCGCTACGACGTGGTCGTACCTTCGGCAGCAGATCAGCAATAGCACCCCGACTCGAGGAGGATCCCG", "ACCGTCGATGTGCCCGGTCGCGCCGCGTCCACCTCGGTCATCGACCCCACGATGAGGACGCCATCGGCCGCGACCAAGCCCCGTGAAACTCTGACGGCGTGCTGGCCGGGCTGCGGCACCTGATCACCTTAGGGCACTTGGGCCACCACAACGGGCCGCCGGTCTCGACAGTGGCCACCACCACACAGGTGACTTCCGGCGGGACGTAAGTCCCTAACGCGTCGTTCCGCACGCGGTTAGCTTTGCTGCC", "GGGTCAGGTATATTTATCGCACACTTGGGCACATGACACACAAGCGCCAGAATCCCGGACCGAACCGAGCACCGTGGGTGGGCAGCCTCCATACAGCGATGACCTGATCGATCATCGGCCAGGGCGCCGGGCTTCCAACCGTGGCCGTCTCAGTACCCAGCCTCATTGACCCTTCGACGCATCCACTGCGCGTAAGTCGGCTCAACCCTTTCAAACCGCTGGATTACCGACCGCAGAAAGGGGGCAGGAC", "GTAGGTCAAACCGGGTGTACATACCCGCTCAATCGCCCAGCACTTCGGGCAGATCACCGGGTTTCCCCGGTATCACCAATACTGCCACCAAACACAGCAGGCGGGAAGGGGCGAAAGTCCCTTATCCGACAATAAAACTTCGCTTGTTCGACGCCCGGTTCACCCGATATGCACGGCGCCCAGCCATTCGTGACCGACGTCCCCAGCCCCAAGGCCGAACGACCCTAGGAGCCACGAGCAATTCACAGCG", "CCGCTGGCGACGCTGTTCGCCGGCAGCGTGCGTGACGACTTCGAGCTGCCCGACTACACCTGGTGACCACCGCCGACGGGCACCTCTCCGCCAGGTAGGCACGGTTTGTCGCCGGCAATGTGACCTTTGGGCGCGGTCTTGAGGACCTTCGGCCCCACCCACGAGGCCGCCGCCGGCCGATCGTATGACGTGCAATGTACGCCATAGGGTGCGTGTTACGGCGATTACCTGAAGGCGGCGGTGGTCCGGA", "GGCCAACTGCACCGCGCTCTTGATGACATCGGTGGTCACCATGGTGTCCGGCATGATCAACCTCCGCTGTTCGATATCACCCCGATCTTTCTGAACGGCGGTTGGCAGACAACAGGGTCAATGGTCCCCAAGTGGATCACCGACGGGCGCGGACAAATGGCCCGCGCTTCGGGGACTTCTGTCCCTAGCCCTGGCCACGATGGGCTGGTCGGATCAAAGGCATCCGTTTCCATCGATTAGGAGGCATCAA", "GTACATGTCCAGAGCGAGCCTCAGCTTCTGCGCAGCGACGGAAACTGCCACACTCAAAGCCTACTGGGCGCACGTGTGGCAACGAGTCGATCCACACGAAATGCCGCCGTTGGGCCGCGGACTAGCCGAATTTTCCGGGTGGTGACACAGCCCACATTTGGCATGGGACTTTCGGCCCTGTCCGCGTCCGTGTCGGCCAGACAAGCTTTGGGCATTGGCCACAATCGGGCCACAATCGAAAGCCGAGCAG", "GGCAGCTGTCGGCAACTGTAAGCCATTTCTGGGACTTTGCTGTGAAAAGCTGGGCGATGGTTGTGGACCTGGACGAGCCACCCGTGCGATAGGTGAGATTCATTCTCGCCCTGACGGGTTGCGTCTGTCATCGGTCGATAAGGACTAACGGCCCTCAGGTGGGGACCAACGCCCCTGGGAGATAGCGGTCCCCGCCAGTAACGTACCGCTGAACCGACGGGATGTATCCGCCCCAGCGAAGGAGACGGCG", "TCAGCACCATGACCGCCTGGCCACCAATCGCCCGTAACAAGCGGGACGTCCGCGACGACGCGTGCGCTAGCGCCGTGGCGGTGACAACGACCAGATATGGTCCGAGCACGCGGGCGAACCTCGTGTTCTGGCCTCGGCCAGTTGTGTAGAGCTCATCGCTGTCATCGAGCGATATCCGACCACTGATCCAAGTCGGGGGCTCTGGGGACCGAAGTCCCCGGGCTCGGAGCTATCGGACCTCACGATCACC"]
#
## set t equal to the number of strings in Dna, k equal to 15, and N equal to 100
#t = len(Dna)
#k = 15
#N = 100
#
#
## Call GibbsSampler(Dna, k, t, N) 20 times and store the best output in a variable called BestMotifs
#M = GibbsSampler(Dna, k, t, N)
#BestMotifs = M
#for i in range(20):
# if Score(GibbsSampler(Dna, k, t, N)) < Score(BestMotifs):
# BestMotifs = M
## Print the BestMotifs variable
#print(BestMotifs)
## Print Score(BestMotifs)
#print(Score(BestMotifs))
##############################################################################
# Input: A list of strings Dna, and integers k and t
# Output: RandomMotifs(Dna, k, t)
# HINT: You might not actually need to use t since t = len(Dna), but you may find it convenient
def RandomMotifs_Quizz():
# place your code here.
randomMotifs = []
randomMotifs.append("CCA")
randomMotifs.append("CCT")
randomMotifs.append("CTT")
randomMotifs.append("TTG")
return randomMotifs
# Input: Positive integers k and t, followed by a list of strings Dna
# Output: RandomizedMotifSearch(Dna, k, t)
def RandomizedMotifSearch_Quizz(Dna, k, t):
# insert your code here
M = RandomMotifs_Quizz()
BestMotifs = M
Profile = ProfileWithPseudocounts(M)
M = Motifs(Profile, 3, Dna)
print (M)
print (Score(M))
print (Score(BestMotifs))
return
import sys
# 3. Assume we are given the following strings Dna:
DNA1 = "AAGCCAAA"
DNA2 = "AATCCTGG"
DNA3 = "GCTACTTG"
DNA4 = "ATGTTTTG"
Dna = [ DNA1, DNA2, DNA3, DNA4 ]
# Then, assume that RandomizedMotifSearch begins by randomly choosing the following 3-mers Motifs of Dna:
"""
CCA
CCT
CTT
TTG
"""
# What are the 3-mers after one iteration of RandomizedMotifSearch?
# In other words, what are the 3-mers Motifs(Profile(Motifs), Dna)?
# Please enter your answer as four space-separated strings.
# set t equal to the number of strings in Dna and k equal to 3
k = 3
t = 4
print(RandomizedMotifSearch_Quizz(Dna, k, t))
#Randomized algorithms that are not guaranteed to return exact solutions, but do quickly find approximate solutions, are named after the city of ___.
#Monte Carlo
#Randomized algorithms are exact solutions, but not fast
#Las Vegas
#Randomized algorithms are in between exact solutions, but in between fast
#Atlantic City
#Given the following code in Python:
#import random
#y=random.randint(1,10)
#if y>=1 and y < 3:
#print("A")
#elif y>=3 and y<=7:
#print("B")
#else: print("C")
#What is the probability (represented as a decimal) that "B" will be printed?
#0.5
#Which of the following motif-finding algorithms is guaranteed to find an optimum solution? In other words, which of the following are not heuristics? (Select all that apply.)
#BruteForce
#Given the following "un-normalized" set of probabilities (i.e., that do not necessarily sum to 1):
#0.22 0.54 0.58 0.36 0.3
#What is the normalized set of probabilities? (Enter your answer as a sequence of space-separated numbers.)
#0.11 0.27 0.29 0.18 0.15