-
Notifications
You must be signed in to change notification settings - Fork 4
/
main.py
667 lines (311 loc) · 9.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
#!/usr/bin/env python
# coding: utf-8
# # 1. Installing Dependencies and Setup
# In[2]:
from IPython.display import Image, display
# Specify the path to the image file or use the filename if it's in the same directory.
image_path = 'D:\Waste-classifier/cpu config tflow.png'
# Display the image in the Jupyter Notebook
display(Image(filename=image_path))
# In[3]:
pip install tensorflow==2.12.0
# In[4]:
pip install keras==2.10.0
# In[5]:
from IPython.display import Image, display
# Specify the path to the image file or use the filename if it's in the same directory.
image_path = 'D:\Waste-classifier/gpu config tflow.png'
# Display the image in the Jupyter Notebook
display(Image(filename=image_path))
# In[6]:
pip install tensorflow-gpu==2.10.0
# In[7]:
pip install opencv-python
# In[8]:
pip install matplotlib
# In[9]:
get_ipython().system('pip list')
# In[10]:
import tensorflow as tf
import os
# In[11]:
# to see all gpu available in the system
gpus = tf.config.experimental.list_physical_devices('GPU')
print(gpus)
print(len(gpus)) # to get number of gpu available
# In[12]:
# to see all cpu available in the system
gpus = tf.config.experimental.list_physical_devices('CPU')
print(gpus)
print(len(gpus)) # to get number of cpu available
# In[13]:
import cv2
import imghdr
# In[14]:
data_dir = 'train' #gives path to directory
# In[15]:
os.listdir('train') #list folders inside
# In[16]:
# to see number of files harzardous folder
print(len(os.listdir(os.path.join('train','r'))))
# In[17]:
# to see number of files recyclable folder
print(len(os.listdir(os.path.join('train','nr'))))
# In[18]:
# immage extensions that work
image_exts = ['jpeg','jpg','bmp','png']
# In[19]:
from matplotlib import pyplot as plt
# In[20]:
# reding an image using cv2
img = cv2.imread(os.path.join('train','r', 'R_1.jpg'))
print(img)
# reads images numpy array
# In[21]:
plt.imshow(img)
# image would be bluish as opencv reads image as bgr not rgb
# In[22]:
# to color it
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
# # 2. Performing Cleanup of bad images
# In[23]:
# looping through each image to remove bad images
for image_class in os.listdir(data_dir):
for image in os.listdir(os.path.join(data_dir,image_class)):
image_path = os.path.join(data_dir, image_class, image)
try:
img = cv2.imread(image_path)
tip = imghdr.what(image_path)
if tip not in image_exts:
print('Image does not exist in extension list {}'.format(image_path))
os.remove(image_path)
except Exception as e:
print("Exception occured, ",e)
print('Issue with image {}'.format(image_path))
# In[24]:
# after cleanup number of images left
# to see number of files harzardous folder
print(len(os.listdir(os.path.join('train','r'))))
# In[25]:
# to see number of files recyclable folder
print(len(os.listdir(os.path.join('train','nr'))))
# # 3. Building a Data pipeline
# Processing data in 2 classes namely 'Recyclable' , 'Non-Recyclable'
# In[26]:
import numpy as np
from matplotlib import pyplot as plt
# In[27]:
# data has 2 classes or is classified into 2 distinct classes
# In[28]:
# builds a data pipeline
data = tf.keras.utils.image_dataset_from_directory('train')
# In[29]:
# allows us to access the pipeline
data_iterator = data.as_numpy_iterator()
# In[30]:
# accessing the pipeline
# creates a group or collection of images
batch = data_iterator.next()
# In[31]:
# a batch(group of data)
# a set of images made to perform process effeciently
batch
# In[32]:
fig, ax = plt.subplots(ncols=4, figsize=(20,20))
for idx, img in enumerate(batch[0][:4]):
ax[idx].imshow(img.astype(int))
ax[idx].title.set_text(batch[1][idx])
# In[33]:
# the above result shows
# 0 - Non - Recyclable
# 1 - Recyclable
# # 3. Preprocessing Data
# Cleaning, transforming, and preparing raw data to make it suitable to be used as input for deep learning model
# In[34]:
scaled = batch[0] / 255
# In[35]:
scaled
# In[36]:
scaled.min()
# In[37]:
scaled.max()
# In[38]:
# scaling data
data = data.map(lambda x,y: (x/255, y))
# In[39]:
scaled_iterator = data.as_numpy_iterator()
# does shuffling
# In[40]:
batch = scaled_iterator.next()
# In[41]:
batch[0].max()
# In[42]:
batch[0].min()
# In[43]:
fig, ax = plt.subplots(ncols=4, figsize=(20,20))
for idx, img in enumerate(batch[0][:4]):
ax[idx].imshow(img)
ax[idx].title.set_text(batch[1][idx])
# In[44]:
len(data)
# In[45]:
train_size = int(len(data)*.7) # training set
val_size = int(len(data)*.2) + 1 # validation set
test_size = int(len(data)*.1) + 1 # testing set
# In[46]:
train_size
# In[47]:
val_size
# In[48]:
test_size
# In[49]:
train = data.take(train_size)
val = data.skip(train_size).take(val_size)
test = data.skip(train_size).take(test_size)
# # 4. Building Deep Learning Model
# Using neural networks with multiple layers to learn patterns and make predictions
# In[50]:
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout
# In[51]:
model = Sequential()
# In[52]:
# other way
# more readable and clean
# 16- filters
# 3x3 size filters
# 1 - stride
model.add(Conv2D(16, (3,3), 1, activation='relu', input_shape=(256,256,3)))
model.add(MaxPooling2D())
model.add(Conv2D(32, (3,3), 1, activation='relu'))
model.add(MaxPooling2D())
model.add(Conv2D(16, (3,3), 1, activation='relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# In[53]:
# adam - optimizer
# defining losses
# binary classification
model.compile('adam', loss=tf.losses.BinaryCrossentropy(), metrics=['accuracy'])
# In[54]:
model.summary()
# # 5. Training the Model
# Iteratively optimizing model parameters using labeled data to minimize error and enable accurate predictions on new data
# In[55]:
logdir = 'logs'
# In[56]:
# callback important if we want to save the model at a particular checkpoint
# seeing the model
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir)
# In[57]:
# 2 important methods of building a neural network
# model.fit - fit is a training component
# model.predict - it is used when we actually go and make predictions
# one epoch is how much time will we train for
# epoch is one run over our entire set of data
hist = model.fit(train, epochs=5, validation_data=val, callbacks=[tensorboard_callback])
# In[58]:
hist.history
# # 5. Plotting Performance
# In[59]:
fig = plt.figure()
plt.plot(hist.history['loss'], color='teal', label='loss')
plt.plot(hist.history['val_loss'], color='orange', label='val_loss')
fig.suptitle('Loss', fontsize=20)
plt.legend(loc="upper left")
plt.show()
# In[60]:
fig = plt.figure()
plt.plot(hist.history['accuracy'], color='teal', label='accuracy')
plt.plot(hist.history['val_accuracy'], color='orange', label='val_accuracy')
fig.suptitle('Accuracy', fontsize=20)
plt.legend(loc="upper left")
plt.show()
# # 6. Evaluation
# In[61]:
from tensorflow.keras.metrics import Precision, Recall, BinaryAccuracy
# In[62]:
# metrics
pre = Precision()
re = Recall()
acc = BinaryAccuracy()
# In[63]:
for batch in test.as_numpy_iterator():
X, y = batch
yhat = model.predict(X)
pre.update_state(y, yhat)
re.update_state(y, yhat)
acc.update_state(y, yhat)
# In[64]:
print(f'Precision:{pre.result().numpy()}, Recall:{re.result().numpy()}, Accuracy:{acc.result().numpy()}')
# # 7. Testing
# In[65]:
import cv2
# In[65]:
# carrots (Recyclable) test
img = cv2.imread('carrot.jpg')
plt.imshow(img)
plt.show()
# In[66]:
# color fixing
img = cv2.imread('carrot.jpg')
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show()
# In[67]:
resize = tf.image.resize(img, (256,256))
plt.imshow(resize.numpy().astype(int))
plt.show()
# In[68]:
yhat = model.predict(np.expand_dims(resize/255, 0))
# In[69]:
yhat
# In[78]:
# correct prediction
# correct - recyclable
# In[70]:
if yhat <= 0.5:
print(f'Predicted class is Recyclable')
else:
print(f'Predicted class is Non-Recyclable')
# In[87]:
# grass (Organic) test
img = cv2.imread('daal_nr.jpg')
plt.imshow(img)
plt.show()
# In[88]:
# color fixing
img = cv2.imread('daal_nr.jpg')
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show()
# In[89]:
resize = tf.image.resize(img, (256,256))
plt.imshow(resize.numpy().astype(int))
plt.show()
# In[90]:
yhat = model.predict(np.expand_dims(resize/255, 0))
# In[91]:
yhat
# In[92]:
# correct prediction
# correct - organic - non recyclable
# In[93]:
if yhat <= 0.5:
print(f'Predicted class is Recyclable')
else:
print(f'Predicted class is Non-Recyclable')
# # 8. Saving the model
# In[78]:
from tensorflow.keras.models import load_model
# In[79]:
# .h is a serialization format
model.save(os.path.join('models','wastemodel.h5'))
# In[80]:
os.path.join('models','wastemodel.h5')
# In[81]:
new_model = load_model(os.path.join('models','wastemodel.h5'))
# In[82]:
new_model
# In[83]:
yhatnew = new_model.predict(np.expand_dims(resize/255, 0))