forked from MIC-DKFZ/nnUNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataset120_RoadSegmentation.py
87 lines (74 loc) · 3.35 KB
/
Dataset120_RoadSegmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import multiprocessing
import shutil
from multiprocessing import Pool
from batchgenerators.utilities.file_and_folder_operations import *
from nnunetv2.dataset_conversion.generate_dataset_json import generate_dataset_json
from nnunetv2.paths import nnUNet_raw
from skimage import io
from acvl_utils.morphology.morphology_helper import generic_filter_components
from scipy.ndimage import binary_fill_holes
def load_and_covnert_case(input_image: str, input_seg: str, output_image: str, output_seg: str,
min_component_size: int = 50):
seg = io.imread(input_seg)
seg[seg == 255] = 1
image = io.imread(input_image)
image = image.sum(2)
mask = image == (3 * 255)
# the dataset has large white areas in which road segmentations can exist but no image information is available.
# Remove the road label in these areas
mask = generic_filter_components(mask, filter_fn=lambda ids, sizes: [i for j, i in enumerate(ids) if
sizes[j] > min_component_size])
mask = binary_fill_holes(mask)
seg[mask] = 0
io.imsave(output_seg, seg, check_contrast=False)
shutil.copy(input_image, output_image)
if __name__ == "__main__":
# extracted archive from https://www.kaggle.com/datasets/insaff/massachusetts-roads-dataset?resource=download
source = '/media/fabian/data/raw_datasets/Massachussetts_road_seg/road_segmentation_ideal'
dataset_name = 'Dataset120_RoadSegmentation'
imagestr = join(nnUNet_raw, dataset_name, 'imagesTr')
imagests = join(nnUNet_raw, dataset_name, 'imagesTs')
labelstr = join(nnUNet_raw, dataset_name, 'labelsTr')
labelsts = join(nnUNet_raw, dataset_name, 'labelsTs')
maybe_mkdir_p(imagestr)
maybe_mkdir_p(imagests)
maybe_mkdir_p(labelstr)
maybe_mkdir_p(labelsts)
train_source = join(source, 'training')
test_source = join(source, 'testing')
with multiprocessing.get_context("spawn").Pool(8) as p:
# not all training images have a segmentation
valid_ids = subfiles(join(train_source, 'output'), join=False, suffix='png')
num_train = len(valid_ids)
r = []
for v in valid_ids:
r.append(
p.starmap_async(
load_and_covnert_case,
((
join(train_source, 'input', v),
join(train_source, 'output', v),
join(imagestr, v[:-4] + '_0000.png'),
join(labelstr, v),
50
),)
)
)
# test set
valid_ids = subfiles(join(test_source, 'output'), join=False, suffix='png')
for v in valid_ids:
r.append(
p.starmap_async(
load_and_covnert_case,
((
join(test_source, 'input', v),
join(test_source, 'output', v),
join(imagests, v[:-4] + '_0000.png'),
join(labelsts, v),
50
),)
)
)
_ = [i.get() for i in r]
generate_dataset_json(join(nnUNet_raw, dataset_name), {0: 'R', 1: 'G', 2: 'B'}, {'background': 0, 'road': 1},
num_train, '.png', dataset_name=dataset_name)