-
Notifications
You must be signed in to change notification settings - Fork 5
/
lvvit_l2_3keep.py
930 lines (791 loc) · 36.2 KB
/
lvvit_l2_3keep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
import torch
import torch.nn as nn
import numpy as np
from functools import partial
import torch.nn.init as init
import torch.nn.functional as F
import math
from timm.models.layers import DropPath, to_2tuple
import torch
import torch.nn as nn
from timm.models.layers import trunc_normal_
import numpy as np
import json
from utils import batch_index_select
file = 'lvvit_l2_score.json'
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic',
'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225),
'classifier': 'head',
**kwargs
}
default_cfgs = {
'LV_ViT_Tiny': _cfg(),
'LV_ViT': _cfg(),
'LV_ViT_Medium': _cfg(crop_pct=1.0),
'LV_ViT_Large': _cfg(crop_pct=1.0),
}
DROPOUT_FLOPS = 4
LAYER_NORM_FLOPS = 5
ACTIVATION_FLOPS = 8
SOFTMAX_FLOPS = 5
class GroupLinear(nn.Module):
'''
Group Linear operator
'''
def __init__(self, in_planes, out_channels,groups=1, bias=True):
super(GroupLinear, self).__init__()
assert in_planes%groups==0
assert out_channels%groups==0
self.in_dim = in_planes
self.out_dim = out_channels
self.groups=groups
self.bias = bias
self.group_in_dim = int(self.in_dim/self.groups)
self.group_out_dim = int(self.out_dim/self.groups)
self.group_weight = nn.Parameter(torch.zeros(self.groups, self.group_in_dim, self.group_out_dim))
self.group_bias=nn.Parameter(torch.zeros(self.out_dim))
def forward(self, x):
t,b,d=x.size()
x = x.view(t,b,self.groups,int(d/self.groups))
out = torch.einsum('tbgd,gdf->tbgf', (x, self.group_weight)).reshape(t,b,self.out_dim)+self.group_bias
return out
def extra_repr(self):
s = ('{in_dim}, {out_dim}')
if self.groups != 1:
s += ', groups={groups}'
if self.bias is None:
s += ', bias=False'
return s.format(**self.__dict__)
class Mlp(nn.Module):
'''
MLP with support to use group linear operator
'''
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., group=1):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
if group==1:
self.fc1 = nn.Linear(in_features, hidden_features)
self.fc2 = nn.Linear(hidden_features, out_features)
else:
self.fc1 = GroupLinear(in_features, hidden_features,group)
self.fc2 = GroupLinear(hidden_features, out_features,group)
self.act = act_layer()
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class GroupNorm(nn.Module):
def __init__(self, num_groups, embed_dim, eps=1e-5, affine=True):
super().__init__()
self.gn = nn.GroupNorm(num_groups, embed_dim,eps,affine)
def forward(self, x):
B,T,C = x.shape
x = x.view(B*T,C)
x = self.gn(x)
x = x.view(B,T,C)
return x
class Attention(nn.Module):
'''
Multi-head self-attention
from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
with some modification to support different num_heads and head_dim.
'''
def __init__(self, dim, num_heads=8, head_dim=None, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
if head_dim is not None:
self.head_dim=head_dim
else:
head_dim = dim // num_heads
self.head_dim = head_dim
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, self.head_dim* self.num_heads * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(self.head_dim* self.num_heads, dim)
self.proj_drop = nn.Dropout(proj_drop)
def softmax_with_policy(self, attn, policy, eps=1e-6):
B, N, _ = policy.size()
B, H, N, N = attn.size()
attn_policy = policy.reshape(B, 1, 1, N) # * policy.reshape(B, 1, N, 1)
eye = torch.eye(N, dtype=attn_policy.dtype, device=attn_policy.device).view(1, 1, N, N)
attn_policy = attn_policy + (1.0 - attn_policy) * eye
max_att = torch.max(attn, dim=-1, keepdim=True)[0]
attn = attn - max_att
# attn = attn.exp_() * attn_policy
# return attn / attn.sum(dim=-1, keepdim=True)
# for stable training
attn = attn.to(torch.float32).exp_() * attn_policy.to(torch.float32)
attn = (attn + eps/N) / (attn.sum(dim=-1, keepdim=True) + eps)
return attn.type_as(max_att)
def forward(self, x, policy, padding_mask=None):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
# B,heads,N,C/heads
q, k, v = qkv[0], qkv[1], qkv[2]
# trick here to make [email protected] more stable
attn = ((q * self.scale) @ k.transpose(-2, -1))
if padding_mask is not None:
# attn = attn.view(B, self.num_heads, N, N)
# attn = attn.masked_fill(
# padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
# float("-inf"),
# )
# attn_float = attn.softmax(dim=-1, dtype=torch.float32)
# attn = attn_float.type_as(attn)
raise NotImplementedError
else:
if policy is None:
attn = attn.softmax(dim=-1)
elif not self.training:
attn = self.softmax_with_policy(attn, policy, 0)
else:
attn = self.softmax_with_policy(attn, policy, 1e-6)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.head_dim* self.num_heads)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
'''
Pre-layernorm transformer block
'''
def __init__(self, dim, num_heads, head_dim=None, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, group=1, skip_lam=1.):
super().__init__()
self.dim = dim
self.mlp_hidden_dim = int(dim * mlp_ratio)
self.skip_lam = skip_lam
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, head_dim=head_dim, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(in_features=dim, hidden_features=self.mlp_hidden_dim, act_layer=act_layer, drop=drop, group=group)
def forward(self, x, policy=None, padding_mask=None):
x = x + self.drop_path(self.attn(self.norm1(x), policy, padding_mask))/self.skip_lam
x = x + self.drop_path(self.mlp(self.norm2(x)))/self.skip_lam
return x
def flops(self, s):
heads = self.attn.num_heads
h = self.dim
i = self.mlp_hidden_dim
mha_block_flops = dict(
kqv=3 * h * h ,
attention_scores=h * s,
attn_softmax=SOFTMAX_FLOPS * s * heads,
attention_dropout=DROPOUT_FLOPS * s * heads,
attention_scale=s * heads,
attention_weighted_avg_values=h * s,
attn_output=h * h,
attn_output_bias=h,
attn_output_dropout=DROPOUT_FLOPS * h,
attn_output_residual=h,
attn_output_layer_norm=LAYER_NORM_FLOPS * h,)
ffn_block_flops = dict(
intermediate=h * i,
intermediate_act=ACTIVATION_FLOPS * i,
intermediate_bias=i,
output=h * i,
output_bias=h,
output_dropout=DROPOUT_FLOPS * h,
output_residual=h,
output_layer_norm=LAYER_NORM_FLOPS * h,)
return sum(mha_block_flops.values())*s + sum(ffn_block_flops.values())*s
class MHABlock(nn.Module):
"""
Multihead Attention block with residual branch
"""
def __init__(self, dim, num_heads, head_dim=None, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, group=1, skip_lam=1.):
super().__init__()
self.dim = dim
self.norm1 = norm_layer(dim)
self.skip_lam = skip_lam
self.attn = Attention(
dim, num_heads=num_heads, head_dim=head_dim, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x, padding_mask=None):
x = x + self.drop_path(self.attn(self.norm1(x*self.skip_lam), padding_mask))/self.skip_lam
return x
def flops(self, s):
heads = self.attn.num_heads
h = self.dim
block_flops = dict(
kqv=3 * h * h ,
attention_scores=h * s,
attn_softmax=SOFTMAX_FLOPS * s * heads,
attention_dropout=DROPOUT_FLOPS * s * heads,
attention_scale=s * heads,
attention_weighted_avg_values=h * s,
attn_output=h * h,
attn_output_bias=h,
attn_output_dropout=DROPOUT_FLOPS * h,
attn_output_residual=h,
attn_output_layer_norm=LAYER_NORM_FLOPS * h,)
return sum(block_flops.values())*s
class FFNBlock(nn.Module):
"""
Feed forward network with residual branch
"""
def __init__(self, dim, num_heads, head_dim=None, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, group=1, skip_lam=1.):
super().__init__()
self.skip_lam = skip_lam
self.dim = dim
self.mlp_hidden_dim = int(dim * mlp_ratio)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(in_features=dim, hidden_features=self.mlp_hidden_dim, act_layer=act_layer, drop=drop, group=group)
def forward(self, x):
x = x + self.drop_path(self.mlp(self.norm2(x*self.skip_lam)))/self.skip_lam
return x
def flops(self, s):
heads = self.attn.num_heads
h = self.dim
i = self.mlp_hidden_dim
block_flops = dict(
intermediate=h * i,
intermediate_act=ACTIVATION_FLOPS * i,
intermediate_bias=i,
output=h * i,
output_bias=h,
output_dropout=DROPOUT_FLOPS * h,
output_residual=h,
output_layer_norm=LAYER_NORM_FLOPS * h,)
return sum(block_flops.values())*s
class HybridEmbed(nn.Module):
""" CNN Feature Map Embedding
Extract feature map from CNN, flatten, project to embedding dim.
from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768):
super().__init__()
assert isinstance(backbone, nn.Module)
img_size = to_2tuple(img_size)
self.img_size = img_size
self.backbone = backbone
if feature_size is None:
with torch.no_grad():
training = backbone.training
if training:
backbone.eval()
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1]
feature_size = o.shape[-2:]
feature_dim = o.shape[1]
backbone.train(training)
else:
feature_size = to_2tuple(feature_size)
feature_dim = self.backbone.feature_info.channels()[-1]
self.num_patches = feature_size[0] * feature_size[1]
self.proj = nn.Conv2d(feature_dim, embed_dim,kernel_size=1)
def forward(self, x):
x = self.backbone(x)[-1]
x = self.proj(x)
return x
class PatchEmbedNaive(nn.Module):
"""
Image to Patch Embedding
from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.embed_dim = embed_dim
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x)
return x
def flops(self):
img_size = self.img_size[0]
block_flops = dict(
proj=img_size*img_size*3*self.embed_dim,
)
return sum(block_flops.values())
class PatchEmbed4_2(nn.Module):
"""
Image to Patch Embedding with 4 layer convolution
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
new_patch_size = to_2tuple(patch_size // 2)
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.embed_dim = embed_dim
self.conv1 = nn.Conv2d(in_chans, 64, kernel_size=7, stride=2, padding=3, bias=False) # 112x112
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False) # 112x112
self.bn2 = nn.BatchNorm2d(64)
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(64)
self.proj = nn.Conv2d(64, embed_dim, kernel_size=new_patch_size, stride=new_patch_size)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x = self.proj(x) # [B, C, W, H]
return x
def flops(self):
img_size = self.img_size[0]
block_flops = dict(
conv1=img_size/2*img_size/2*3*64*7*7,
conv2=img_size/2*img_size/2*64*64*3*3,
conv3=img_size/2*img_size/2*64*64*3*3,
proj=img_size/2*img_size/2*64*self.embed_dim,
)
return sum(block_flops.values())
class PatchEmbed4_2_128(nn.Module):
"""
Image to Patch Embedding with 4 layer convolution and 128 filters
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
new_patch_size = to_2tuple(patch_size // 2)
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.embed_dim = embed_dim
self.conv1 = nn.Conv2d(in_chans, 128, kernel_size=7, stride=2, padding=3, bias=False) # 112x112
self.bn1 = nn.BatchNorm2d(128)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False) # 112x112
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(128)
self.proj = nn.Conv2d(128, embed_dim, kernel_size=new_patch_size, stride=new_patch_size)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x = self.proj(x) # [B, C, W, H]
return x
def flops(self):
img_size = self.img_size[0]
block_flops = dict(
conv1=img_size/2*img_size/2*3*128*7*7,
conv2=img_size/2*img_size/2*128*128*3*3,
conv3=img_size/2*img_size/2*128*128*3*3,
proj=img_size/2*img_size/2*128*self.embed_dim,
)
return sum(block_flops.values())
def get_block(block_type, **kargs):
if block_type=='mha':
# multi-head attention block
return MHABlock(**kargs)
elif block_type=='ffn':
# feed forward block
return FFNBlock(**kargs)
elif block_type=='tr':
# transformer block
return Block(**kargs)
def rand_bbox(size, lam):
W = size[2]
H = size[3]
cut_rat = np.sqrt(1. - lam)
cut_w = np.int(W * cut_rat)
cut_h = np.int(H * cut_rat)
# uniform
cx = np.random.randint(W)
cy = np.random.randint(H)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
def get_dpr(drop_path_rate,depth,drop_path_decay='linear'):
if drop_path_decay=='linear':
# linear dpr decay
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
elif drop_path_decay=='fix':
# use fixed dpr
dpr= [drop_path_rate]*depth
else:
# use predefined drop_path_rate list
assert len(drop_path_rate)==depth
dpr=drop_path_rate
return dpr
class PredictorLG(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, embed_dim=384):
super().__init__()
self.in_conv = nn.Sequential(
nn.LayerNorm(embed_dim),
nn.Linear(embed_dim, embed_dim),
nn.GELU()
)
self.out_conv = nn.Sequential(
nn.Linear(embed_dim, embed_dim // 2),
nn.GELU(),
nn.Linear(embed_dim // 2, embed_dim // 4),
nn.GELU(),
nn.Linear(embed_dim // 4, 2),
nn.LogSoftmax(dim=-1)
)
def forward(self, x, policy):
x = self.in_conv(x)
B, N, C = x.size()
local_x = x[:,:, :C//2]
global_x = (x[:,:, C//2:] * policy).sum(dim=1, keepdim=True) / torch.sum(policy, dim=1, keepdim=True)
x = torch.cat([local_x, global_x.expand(B, N, C//2)], dim=-1)
return self.out_conv(x)
class MultiheadPredictorLG(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, num_heads=6, embed_dim=384):
super().__init__()
#print('head_num',num_heads)
self.num_heads=num_heads
self.embed_dim = embed_dim
onehead_in_conv = nn.Sequential(
nn.LayerNorm(embed_dim // num_heads),
nn.Linear(embed_dim // num_heads, embed_dim // num_heads),
nn.GELU()
)
onehead_out_conv = nn.Sequential(
nn.Linear(embed_dim // num_heads, embed_dim // num_heads // 2),
nn.GELU(),
nn.Linear(embed_dim // num_heads // 2, embed_dim // num_heads // 4),
nn.GELU(),
nn.Linear(embed_dim // num_heads // 4, 2),
#nn.LogSoftmax(dim=-1)
)
in_conv_list = [onehead_in_conv for _ in range(num_heads)]
out_conv_list = [onehead_out_conv for _ in range(num_heads)]
self.in_conv = nn.ModuleList(in_conv_list)
self.out_conv = nn.ModuleList(out_conv_list)
def forward(self, x, policy):
multihead_score = 0
multihead_softmax_score = 0
for i in range(self.num_heads):
x_single = x[:,:,self.embed_dim//self.num_heads*i:self.embed_dim//self.num_heads*(i+1)] #([96, 196, 64])
x_single = self.in_conv[i](x_single)
B, N, C = x_single.size() #([96, 196, 64])
local_x = x_single[:,:, :C//2] #([96, 196, 32])
global_x = (x_single[:,:, C//2:] * policy).sum(dim=1, keepdim=True) / torch.sum(policy, dim=1, keepdim=True) #([96, 1, 32])
x_single = torch.cat([local_x, global_x.expand(B, N, C//2)], dim=-1) #([96, 196, 64])
x_single=self.out_conv[i](x_single) #([96, 196, 2])
# for placeholder
m = nn.Softmax(dim=-1)
score_softmax = m(x_single)
multihead_softmax_score += score_softmax
# for gumble
n = nn.LogSoftmax(dim=-1)
score_single = n(x_single)
multihead_score += score_single
# for gumble
multihead_score = multihead_score / self.num_heads # ([96, 196, 2])
# for placeholder
multihead_softmax_score = multihead_softmax_score / self.num_heads # get softmax keep/drop probability
return multihead_score, multihead_softmax_score
class LVViTDiffPruning(nn.Module):
""" Vision Transformer with tricks
Arguements:
p_emb: different conv based position embedding (default: 4 layer conv)
skip_lam: residual scalar for skip connection (default: 1.0)
order: which order of layers will be used (default: None, will override depth if given)
mix_token: use mix token augmentation for batch of tokens (default: False)
return_dense: whether to return feature of all tokens with an additional aux_head (default: False)
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., drop_path_decay='linear', hybrid_backbone=None, norm_layer=nn.LayerNorm, p_emb='4_2', head_dim = None,
skip_lam = 1.0,order=None, mix_token=False, return_dense=False, pruning_loc=None, token_ratio=None, distill=False, viz_mode=False):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.output_dim = embed_dim if num_classes==0 else num_classes
if hybrid_backbone is not None:
self.patch_embed = HybridEmbed(
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
else:
if p_emb=='4_2':
patch_embed_fn = PatchEmbed4_2
elif p_emb=='4_2_128':
patch_embed_fn = PatchEmbed4_2_128
else:
patch_embed_fn = PatchEmbedNaive
self.patch_embed = patch_embed_fn(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
if order is None:
dpr=get_dpr(drop_path_rate, depth, drop_path_decay)
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, head_dim=head_dim, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, skip_lam=skip_lam)
for i in range(depth)])
else:
# use given order to sequentially generate modules
dpr=get_dpr(drop_path_rate, len(order), drop_path_decay)
self.blocks = nn.ModuleList([
get_block(order[i],
dim=embed_dim, num_heads=num_heads, head_dim=head_dim, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, skip_lam=skip_lam)
for i in range(len(order))])
self.norm = norm_layer(embed_dim)
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.return_dense=return_dense
self.mix_token=mix_token
predictor_list = [MultiheadPredictorLG(num_heads,embed_dim) for _ in range(len(pruning_loc))]
self.score_predictor = nn.ModuleList(predictor_list)
self.pruning_loc = pruning_loc
self.token_ratio = token_ratio
if return_dense:
self.aux_head=nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if mix_token:
self.beta = 1.0
assert return_dense, "always return all features when mixtoken is enabled"
self.distill = distill
self.viz_mode = viz_mode
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, GroupLinear):
trunc_normal_(m.group_weight, std=.02)
if isinstance(m, GroupLinear) and m.group_bias is not None:
nn.init.constant_(m.group_bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward(self, x):
x = self.patch_embed(x)
x = x.flatten(2).transpose(1, 2)
B = x.shape[0]
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
p_count = 0
out_pred_prob = []
score_dict = {}
sparse = []
init_n = 14 * 14
prev_decision = torch.ones(B, init_n, 1, dtype=x.dtype, device=x.device)
policy = torch.ones(B, init_n + 1, 1, dtype=x.dtype, device=x.device)
if self.viz_mode:
decisions = [[] for _ in self.pruning_loc]
for i, blk in enumerate(self.blocks):
if i in self.pruning_loc:
spatial_x = x[:, 1:]
if i != self.pruning_loc[0]:
rep_decision = torch.ones(B, p_count, 1, dtype=x.dtype, device=x.device)
prev_decision = torch.cat([prev_decision, rep_decision], dim=1)
pred_score, softmax_score = self.score_predictor[p_count](spatial_x, prev_decision)
pred_score = pred_score.reshape(B, -1, 2)
softmax_score = softmax_score.reshape(B, -1, 2)
#-------------------- 确定 informative token 和 placeholder 的 mask
if i == self.pruning_loc[0]:
hard_keep_decision = F.gumbel_softmax(pred_score, hard=True)[:, :, 0:1] * prev_decision
hard_drop_decision = (1 - hard_keep_decision) - (1 - prev_decision) # current drop decision
else:
hard_keep_decision_all = F.gumbel_softmax(pred_score, hard=True)[:, :, 0:1] * prev_decision
hard_keep_decision = torch.cat([hard_keep_decision_all[:,:-p_count], rep_decision], dim=1)
hard_drop_decision = (1 - hard_keep_decision) - (1 - prev_decision)
############### end
###get representative token (regularization)
softmax_score = softmax_score[:, :, 0:1] # softmax score of all tokens to keep
placeholder_score = softmax_score * hard_drop_decision #keep score of only placeholder tokens
x2 = spatial_x * placeholder_score # placehoder score [96, 196, 384]
x2_sum = torch.sum(x2, dim=1) # sum by the N dimension, output (B,N,C)-->(B,C) [96, 384]
x2_sum = torch.unsqueeze(x2_sum, dim=1) # resize to (B,1,C) [96, 1, 384]
#--------------------
placeholder_score_sum = torch.sum(placeholder_score, dim=1) # sum of token score, [96, 196, 1]-->[96, 1]
placeholder_score_sum = torch.unsqueeze(placeholder_score_sum, dim=1) # resize to [96, 1, 1]
#--------------------
represent_token = x2_sum / placeholder_score_sum # regularization --> [96, 1, 384] representitave token
rep_mean = represent_token.mean()
if torch.isnan(rep_mean):
print('has nan')
represent_token = torch.nan_to_num(represent_token, nan = 1e-6)
x = torch.cat((x,represent_token), dim=1)
if i != self.pruning_loc[0]:
hard_keep_decision = hard_keep_decision[:,:-p_count]
if self.training:
out_pred_prob.append(hard_keep_decision.reshape(B, init_n))
cls_policy = torch.ones(B, 1, 1, dtype=hard_keep_decision.dtype, device=hard_keep_decision.device)
rep_policy = torch.ones(B, (p_count + 1), 1, dtype=hard_keep_decision.dtype, device=hard_keep_decision.device)
policy = torch.cat([cls_policy, hard_keep_decision, rep_policy], dim=1)
x = blk(x, policy=policy)
prev_decision = hard_keep_decision
else:
cls_policy = torch.ones(B, 1, 1, dtype=hard_keep_decision.dtype, device=hard_keep_decision.device)
rep_policy = torch.ones(B, (p_count + 1), 1, dtype=hard_keep_decision.dtype, device=hard_keep_decision.device)
policy = torch.cat([cls_policy, hard_keep_decision, rep_policy], dim=1)
zeros, unzeros = test_irregular_sparsity(p_count, policy)
sparse.append([zeros, unzeros])
x = blk(x, policy=policy)
prev_decision = hard_keep_decision
score = pred_score[:, :, 0:1].cpu().numpy().tolist()
score_dict[p_count] = score[0] #144/12=12x30x87x4=125280= 1.5G
p_count += 1
else:
x = blk(x, policy)
x = self.norm(x)
x_cls = self.head(x[:,0])
x_aux = self.aux_head(x[:,1:-3])
final_pred = x_cls + 0.5 * x_aux.max(1)[0]
if self.training:
if self.distill:
return x_cls, x_aux, prev_decision.detach(), out_pred_prob
else:
return final_pred, out_pred_prob
else:
with open(file, 'a') as f: # ins
json.dump(score_dict, f)
f.write('\n')
sparse = torch.FloatTensor(sparse).cuda()
return final_pred, sparse
class LVViT_Teacher(nn.Module):
""" Vision Transformer with tricks
Arguements:
p_emb: different conv based position embedding (default: 4 layer conv)
skip_lam: residual scalar for skip connection (default: 1.0)
order: which order of layers will be used (default: None, will override depth if given)
mix_token: use mix token augmentation for batch of tokens (default: False)
return_dense: whether to return feature of all tokens with an additional aux_head (default: False)
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., drop_path_decay='linear', hybrid_backbone=None, norm_layer=nn.LayerNorm, p_emb='4_2', head_dim = None,
skip_lam = 1.0,order=None, mix_token=False, return_dense=False):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.output_dim = embed_dim if num_classes==0 else num_classes
if hybrid_backbone is not None:
self.patch_embed = HybridEmbed(
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
else:
if p_emb=='4_2':
patch_embed_fn = PatchEmbed4_2
elif p_emb=='4_2_128':
patch_embed_fn = PatchEmbed4_2_128
else:
patch_embed_fn = PatchEmbedNaive
self.patch_embed = patch_embed_fn(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
if order is None:
dpr=get_dpr(drop_path_rate, depth, drop_path_decay)
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, head_dim=head_dim, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, skip_lam=skip_lam)
for i in range(depth)])
else:
# use given order to sequentially generate modules
dpr=get_dpr(drop_path_rate, len(order), drop_path_decay)
self.blocks = nn.ModuleList([
get_block(order[i],
dim=embed_dim, num_heads=num_heads, head_dim=head_dim, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, skip_lam=skip_lam)
for i in range(len(order))])
self.norm = norm_layer(embed_dim)
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.return_dense=return_dense
self.mix_token=mix_token
if return_dense:
self.aux_head=nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if mix_token:
self.beta = 1.0
assert return_dense, "always return all features when mixtoken is enabled"
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, GroupLinear):
trunc_normal_(m.group_weight, std=.02)
if isinstance(m, GroupLinear) and m.group_bias is not None:
nn.init.constant_(m.group_bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward(self, x):
x = self.patch_embed(x)
x = x.flatten(2).transpose(1, 2)
B = x.shape[0]
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
for i, blk in enumerate(self.blocks):
x = blk(x)
x = self.norm(x)
x_cls = self.head(x[:,0])
x_aux = self.aux_head(x[:,1:])
return x_cls, x_aux
def test_irregular_sparsity(name,matrix):
# continue
zeros = np.sum(matrix.cpu().detach().numpy() == 0)
non_zeros = np.sum(matrix.cpu().detach().numpy() != 0)
# print(name, non_zeros)
#print(" {}, all weights: {}, irregular zeros: {}, irregular sparsity is: {:.4f}".format( name, zeros+non_zeros, zeros, zeros / (zeros + non_zeros)))
# print(non_zeros+zeros)
# total_nonzeros += 128000
return zeros,non_zeros