diff --git a/smt/applications/mfkpls.py b/smt/applications/mfkpls.py index 8fb176bf5..39397f22c 100644 --- a/smt/applications/mfkpls.py +++ b/smt/applications/mfkpls.py @@ -34,6 +34,13 @@ def _initialize(self): desc="Correlation function type", types=(str), ) + declare( + "hyper_opt", + "Cobyla", + values=("Cobyla"), + desc="Optimiser for hyperparameters optimisation", + types=str, + ) declare("n_comp", 1, types=int, desc="Number of principal components") self.name = "MFKPLS" diff --git a/smt/applications/mfkplsk.py b/smt/applications/mfkplsk.py index b4fee4d7d..85086b49c 100644 --- a/smt/applications/mfkplsk.py +++ b/smt/applications/mfkplsk.py @@ -26,6 +26,13 @@ def _initialize(self): desc="Correlation function type", types=(str), ) + declare( + "hyper_opt", + "Cobyla", + values=("Cobyla"), + desc="Optimiser for hyperparameters optimisation", + types=str, + ) self.name = "MFKPLSK" def _componentwise_distance(self, dx, opt=0): diff --git a/smt/applications/mixed_integer.py b/smt/applications/mixed_integer.py index fc2587b98..1f7b55c41 100644 --- a/smt/applications/mixed_integer.py +++ b/smt/applications/mixed_integer.py @@ -97,7 +97,6 @@ def __init__( """ super().__init__() self._surrogate = surrogate - if isinstance(self._surrogate, KrgBased): raise ValueError( "Using MixedIntegerSurrogateModel integer model with " @@ -109,7 +108,6 @@ def __init__( self._input_in_folded_space = input_in_folded_space self.supports = self._surrogate.supports self.options["print_global"] = False - if "poly" in self._surrogate.options: if self._surrogate.options["poly"] != "constant": raise ValueError("constant regression must be used with mixed integer") @@ -198,6 +196,7 @@ def __init__( + " is not supported. Please use MixedIntegerSurrogateModel instead." ) self.options["design_space"] = self._surrogate.design_space + self._surrogate.options["hyper_opt"] = "Cobyla" self._input_in_folded_space = input_in_folded_space self.supports = self._surrogate.supports @@ -333,6 +332,7 @@ def build_kriging_model(self, surrogate): Build MixedIntegerKrigingModel from given SMT surrogate model. """ surrogate.options["design_space"] = self._design_space + surrogate.options["hyper_opt"] = "Cobyla" return MixedIntegerKrigingModel( surrogate=surrogate, input_in_folded_space=self._work_in_folded_space, diff --git a/smt/applications/tests/test_vfm.py b/smt/applications/tests/test_vfm.py index ee099ad67..577bf6874 100644 --- a/smt/applications/tests/test_vfm.py +++ b/smt/applications/tests/test_vfm.py @@ -68,7 +68,12 @@ def test_vfm(self): Bridge_candidate = "KRG" type_bridge = "Multiplicative" optionsLF = {} - optionsB = {"theta0": [1e-2] * ndim, "print_prediction": False, "deriv": False} + optionsB = { + "theta0": [1e-2] * ndim, + "print_prediction": False, + "deriv": False, + "hyper_opt": "Cobyla", + } # Construct low/high fidelity data and validation points sampling = LHS(xlimits=funLF.xlimits, criterion="m", random_state=42) @@ -138,7 +143,12 @@ def run_vfm_example(self): Bridge_candidate = "KRG" type_bridge = "Multiplicative" optionsLF = {} - optionsB = {"theta0": [1e-2] * ndim, "print_prediction": False, "deriv": False} + optionsB = { + "theta0": [1e-2] * ndim, + "print_prediction": False, + "deriv": False, + "hyper_opt": "Cobyla", + } # Construct low/high fidelity data and validation points sampling = LHS(xlimits=funLF.xlimits, criterion="m") @@ -200,7 +210,9 @@ def test_KRG_KRG_additive(self): yp = M.predict_values(np.atleast_2d(xt[0])) dyp = M.predict_derivatives(np.atleast_2d(xt[0]), kx=0) self.assert_error(yp, np.array([[0.015368, 0.367424]]), atol=2e-2, rtol=3e-2) - self.assert_error(dyp, np.array([[0.07007729, 3.619421]]), atol=3e-1, rtol=1e-2) + self.assert_error( + dyp, np.array([[-3.11718627e-03, 3.19506239e00]]), atol=3e-1, rtol=1e-2 + ) def test_QP_KRG_additive(self): with Silence(): @@ -214,7 +226,7 @@ def test_QP_KRG_additive(self): self.assert_error(yp, np.array([[0.015368, 0.367424]]), atol=1e-2, rtol=1e-2) self.assert_error( - dyp, np.array([[1.16130832e-03, 4.36712162e00]]), atol=3e-1, rtol=1e-2 + dyp, np.array([[0.02596425, 4.70243162]]), atol=3e-1, rtol=1e-2 ) def test_KRG_KRG_mult(self): @@ -228,7 +240,9 @@ def test_KRG_KRG_mult(self): dyp = M.predict_derivatives(np.atleast_2d(xt[0]), kx=0) self.assert_error(yp, np.array([[0.015368, 0.367424]]), atol=2e-2, rtol=3e-2) - self.assert_error(dyp, np.array([[0.07007729, 3.619421]]), atol=3e-1, rtol=1e-2) + self.assert_error( + dyp, np.array([[-3.11718627e-03, 3.19506239e00]]), atol=3e-1, rtol=1e-2 + ) def test_QP_KRG_mult(self): with Silence(): diff --git a/smt/surrogate_models/gekpls.py b/smt/surrogate_models/gekpls.py index 99e2d6943..adcfffecf 100644 --- a/smt/surrogate_models/gekpls.py +++ b/smt/surrogate_models/gekpls.py @@ -32,6 +32,13 @@ def _initialize(self): types=int, desc="Number of extra points per training point", ) + declare( + "hyper_opt", + "Cobyla", + values=("Cobyla"), + desc="Optimiser for hyperparameters optimisation", + types=str, + ) self.supports["training_derivatives"] = True def _check_param(self): diff --git a/smt/surrogate_models/krg_based.py b/smt/surrogate_models/krg_based.py index 158baf853..e13f14cdd 100644 --- a/smt/surrogate_models/krg_based.py +++ b/smt/surrogate_models/krg_based.py @@ -138,7 +138,7 @@ def _initialize(self): ) declare( "hyper_opt", - "Cobyla", + "TNC", values=("Cobyla", "TNC"), desc="Optimiser for hyperparameters optimisation", types=str, @@ -1016,7 +1016,7 @@ def _reduced_likelihood_gradient(self, theta): gamma = par["gamma"] Q = par["Q"] G = par["G"] - sigma_2 = par["sigma2"] + sigma_2 = par["sigma2"] + self.options["nugget"] nb_theta = len(theta) grad_red = np.zeros(nb_theta) @@ -1908,6 +1908,10 @@ def grad_minus_reduced_likelihood_function(log10t): optimal_theta_res = optimal_theta_res_loop elif self.options["hyper_opt"] == "TNC": + if self.options["use_het_noise"]: + raise ValueError( + "For heteroscedastic noise, please use Cobyla" + ) theta_all_loops = 10**theta_all_loops for theta0_loop in theta_all_loops: optimal_theta_res_loop = optimize.minimize( @@ -1916,7 +1920,7 @@ def grad_minus_reduced_likelihood_function(log10t): method="TNC", jac=grad_minus_reduced_likelihood_function, bounds=bounds_hyp, - options={"maxiter": 100}, + options={"maxfun": 2 * limit}, ) if optimal_theta_res_loop["fun"] < optimal_theta_res["fun"]: optimal_theta_res = optimal_theta_res_loop diff --git a/smt/surrogate_models/sgp.py b/smt/surrogate_models/sgp.py index 728d6b7ae..dd366d7ec 100644 --- a/smt/surrogate_models/sgp.py +++ b/smt/surrogate_models/sgp.py @@ -50,6 +50,13 @@ def _initialize(self): desc="Gaussian noise on observed training data", types=(list, np.ndarray), ) + declare( + "hyper_opt", + "Cobyla", + values=("Cobyla"), + desc="Optimiser for hyperparameters optimisation", + types=str, + ) declare( "eval_noise", True, # for SGP evaluate noise by default diff --git a/smt/surrogate_models/tests/test_krg_het_noise.py b/smt/surrogate_models/tests/test_krg_het_noise.py index c06122533..a4c919dfe 100644 --- a/smt/surrogate_models/tests/test_krg_het_noise.py +++ b/smt/surrogate_models/tests/test_krg_het_noise.py @@ -23,7 +23,13 @@ def test_predict_output(self): xt_full = np.array(3 * xt.tolist()) yt_full = np.concatenate((yt, yt + 0.2 * yt_std_rand, yt - 0.2 * yt_std_rand)) - sm = KRG(theta0=[1.0], eval_noise=True, use_het_noise=True, n_start=1) + sm = KRG( + theta0=[1.0], + eval_noise=True, + use_het_noise=True, + n_start=1, + hyper_opt="Cobyla", + ) sm.set_training_values(xt_full, yt_full) sm.train() diff --git a/smt/tests/test_array_outputs.py b/smt/tests/test_array_outputs.py index 5b7c9af2e..88b68ded3 100644 --- a/smt/tests/test_array_outputs.py +++ b/smt/tests/test_array_outputs.py @@ -38,7 +38,7 @@ def test_KRG(self): d0 = interp.predict_derivatives(np.atleast_2d(xt[10, :]), 0) self.assert_error( - d0, np.array([[0.06874097, 4.366292277996716]]), atol=0.55, rtol=0.15 + d0, np.array([[0.24897752, 3.72290526]]), atol=0.55, rtol=0.15 ) def test_RBF(self): diff --git a/smt/tests/test_kpls_auto.py b/smt/tests/test_kpls_auto.py index d561d415a..c68b61648 100644 --- a/smt/tests/test_kpls_auto.py +++ b/smt/tests/test_kpls_auto.py @@ -46,12 +46,9 @@ def setUp(self): n_comp_opt["Branin"] = 2 n_comp_opt["Rosenbrock"] = 1 n_comp_opt["sphere"] = 1 - if platform.startswith("linux"): # result depends on platform - n_comp_opt["exp"] = 2 - else: - n_comp_opt["exp"] = 3 + n_comp_opt["exp"] = 3 n_comp_opt["tanh"] = 1 - n_comp_opt["cos"] = 1 + n_comp_opt["cos"] = 2 self.nt = nt self.ne = ne