From 0b376d0f6de79e3d06291bcfda29889f927f90b5 Mon Sep 17 00:00:00 2001 From: Saves Paul Date: Mon, 18 Mar 2024 10:15:56 +0100 Subject: [PATCH] Test non-zero variance with noise (#533) * rename test * reformating * add test for noise --- .../tests/test_krg_het_noise.py | 42 ---------- smt/surrogate_models/tests/test_krg_noise.py | 84 +++++++++++++++++++ 2 files changed, 84 insertions(+), 42 deletions(-) delete mode 100644 smt/surrogate_models/tests/test_krg_het_noise.py create mode 100644 smt/surrogate_models/tests/test_krg_noise.py diff --git a/smt/surrogate_models/tests/test_krg_het_noise.py b/smt/surrogate_models/tests/test_krg_het_noise.py deleted file mode 100644 index cf1190549..000000000 --- a/smt/surrogate_models/tests/test_krg_het_noise.py +++ /dev/null @@ -1,42 +0,0 @@ -""" -Author: Andres Lopez-Lopera <> - -This package is distributed under New BSD license. -""" - -import unittest -import numpy as np - -from smt.surrogate_models import KRG -from smt.utils.sm_test_case import SMTestCase - - -class Test(SMTestCase): - def test_predict_output(self): - xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0]) - yt = np.array([0.0, 1.0, 1.5, 1.1, 1.0]) - - # Adding noisy repetitions - np.random.seed(6) - yt_std_rand = np.std(yt) * np.random.uniform(size=yt.shape) - xt_full = np.array(3 * xt.tolist()) - yt_full = np.concatenate((yt, yt + 0.2 * yt_std_rand, yt - 0.2 * yt_std_rand)) - - sm = KRG( - theta0=[1.0], - eval_noise=True, - use_het_noise=True, - n_start=1, - hyper_opt="Cobyla", - ) - sm.set_training_values(xt_full, yt_full) - sm.train() - - yt = yt.reshape(-1, 1) - y = sm.predict_values(xt) - t_error = np.linalg.norm(y - yt) / np.linalg.norm(yt) - self.assert_error(t_error, 0.0, 1e-2) - - -if __name__ == "__main__": - unittest.main() diff --git a/smt/surrogate_models/tests/test_krg_noise.py b/smt/surrogate_models/tests/test_krg_noise.py new file mode 100644 index 000000000..bd0ea2ace --- /dev/null +++ b/smt/surrogate_models/tests/test_krg_noise.py @@ -0,0 +1,84 @@ +""" +Author: Andres Lopez-Lopera <> + +This package is distributed under New BSD license. +""" + +import unittest +import numpy as np + +from smt.surrogate_models import KRG +from smt.utils.sm_test_case import SMTestCase + + +class Test(SMTestCase): + def test_predict_output(self): + xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0]) + yt = np.array([0.0, 1.0, 1.5, 1.1, 1.0]) + + # Adding noisy repetitions + np.random.seed(6) + yt_std_rand = np.std(yt) * np.random.uniform(size=yt.shape) + xt_full = np.array(3 * xt.tolist()) + yt_full = np.concatenate((yt, yt + 0.2 * yt_std_rand, yt - 0.2 * yt_std_rand)) + + sm = KRG( + theta0=[1.0], + eval_noise=True, + use_het_noise=True, + n_start=1, + hyper_opt="Cobyla", + ) + sm.set_training_values(xt_full, yt_full) + sm.train() + + yt = yt.reshape(-1, 1) + y = sm.predict_values(xt) + t_error = np.linalg.norm(y - yt) / np.linalg.norm(yt) + self.assert_error(t_error, 0.0, 1e-2) + + def test_predict_variance(self): + # defining the training data + xt = np.array([0.0, 1.0, 2.0, 2.5, 4.0]) + yt = np.array([0.0, 1.0, 1.5, 1.1, 1.0]) + + # defining the models + sm_noise_free = KRG() # noise-free Kriging model + sm_noise_fixed = KRG( + noise0=[1e-1], print_global=False + ) # noisy Kriging model with fixed variance + sm_noise_estim = KRG( + noise0=[1e-1], + eval_noise=True, + noise_bounds=[1e-2, 1000.0], + print_global=False, + ) # noisy Kriging model with estimated variance + + # training the models + sm_noise_free.set_training_values(xt, yt) + sm_noise_free.train() + + sm_noise_fixed.set_training_values(xt, yt) + sm_noise_fixed.train() + + sm_noise_estim.set_training_values(xt, yt) + sm_noise_estim.train() + + # predictions at training points + x = xt + + # error message in case if test case got failed + + # the Variance (interpolation case without noise) must be =/ 0 + var_noise_free = sm_noise_free.predict_variances(x) # predictive variance + self.assert_error(np.linalg.norm(var_noise_free), 0.0, 1e-5) + + # the Variance (regression case with noise) must be =/ 0 + var_noise_fixed = sm_noise_fixed.predict_variances(x) # predictive variance + self.assert_error(np.linalg.norm(var_noise_fixed), 0.04768, 1e-5) + var_noise_estim = sm_noise_estim.predict_variances(x) # predictive variance + self.assert_error(np.linalg.norm(var_noise_estim), 0.01135, 1e-5) + + +if __name__ == "__main__": + unittest.main()