diff --git a/doc/_src_docs/applications/Mixed_Hier_usage.rst b/doc/_src_docs/applications/Mixed_Hier_usage.rst index 2ad149775..c8fa22522 100644 --- a/doc/_src_docs/applications/Mixed_Hier_usage.rst +++ b/doc/_src_docs/applications/Mixed_Hier_usage.rst @@ -40,7 +40,7 @@ The design space is then defined from a list of design variables and implements from smt.applications.mixed_integer import MixedIntegerSamplingMethod from smt.sampling_methods import LHS - from smt.utils.design_space import ( + from smt.design_space import ( CategoricalVariable, DesignSpace, FloatVariable, @@ -91,15 +91,16 @@ The design space is then defined from a list of design variables and implements Hierarchical variables ---------------------- -The design space definition uses the framework of Audet et al. [2]_ to manage both mixed-discrete variables and +The design space definition uses the framework of [2]_ to manage both mixed-discrete variables and hierarchical variables. We distinguish dimensional (or meta) variables which are a special type of variables that may affect the dimension of the problem and decide if some other decreed variables are acting or non-acting. Additionally, it is also possible to define value constraints that explicitly forbid two variables from having some values simultaneously or for a continuous variable to be greater than another. This can be useful for modeling incompatibility relationships: for example, engines can't be -installed on the back of the fuselage (vs on the wings) if a normal tail (vs T-tail) is selected. Note: this feature -is only available if ConfigSpace has been installed: `pip install smt[cs]` +installed on the back of the fuselage (vs on the wings) if a normal tail (vs T-tail) is selected. + +Note: this feature is only available if smt_design_space_ext has been installed: `pip install smt-design-space-ext` The hierarchy relationships are specified after instantiating the design space: @@ -114,15 +115,15 @@ The hierarchy relationships are specified after instantiating the design space: ) from smt.sampling_methods import LHS from smt.surrogate_models import KRG, MixHrcKernelType, MixIntKernelType - from smt.utils.design_space import ( + from smt.design_space import ( CategoricalVariable, - DesignSpace, FloatVariable, IntegerVariable, OrdinalVariable, ) + from smt_design_space_ext import ConfigSpaceDesignSpaceImpl - ds = DesignSpace( + ds = ConfigSpaceDesignSpaceImpl( [ CategoricalVariable( ["A", "B"] @@ -234,6 +235,21 @@ The hierarchy relationships are specified after instantiating the design space: :: + ___________________________________________________________________________ + + MixedIntegerKriging + ___________________________________________________________________________ + + Problem size + + # training points. : 100 + + ___________________________________________________________________________ + + Training + + Training ... + Training - done. Time (sec): 2.9558113 ___________________________________________________________________________ Evaluation @@ -241,11 +257,11 @@ The hierarchy relationships are specified after instantiating the design space: # eval points. : 100 Predicting ... - Predicting - done. Time (sec): 0.2563262 + Predicting - done. Time (sec): 0.2929027 - Prediction time/pt. (sec) : 0.0025633 + Prediction time/pt. (sec) : 0.0029290 - Pred_RMSE 4.089304906792809e-13 + Pred_RMSE 4.0000324624835547e-13 Design space and variable class references @@ -281,10 +297,10 @@ Example of sampling a mixed-discrete design space from smt.applications.mixed_integer import MixedIntegerSamplingMethod from smt.sampling_methods import LHS - from smt.utils.design_space import ( - CategoricalVariable, - DesignSpace, + from smt.design_space import ( FloatVariable, + DesignSpace, + CategoricalVariable, ) float_var = FloatVariable(0, 4) @@ -335,7 +351,7 @@ Example of mixed integer context usage from smt.applications.mixed_integer import MixedIntegerContext from smt.surrogate_models import KRG - from smt.utils.design_space import ( + from smt.design_space import ( CategoricalVariable, DesignSpace, FloatVariable, @@ -386,14 +402,29 @@ Example of mixed integer context usage DOE point nb = 30 ___________________________________________________________________________ + MixedIntegerKriging + ___________________________________________________________________________ + + Problem size + + # training points. : 30 + + ___________________________________________________________________________ + + Training + + Training ... + Training - done. Time (sec): 0.4647245 + ___________________________________________________________________________ + Evaluation # eval points. : 50 Predicting ... - Predicting - done. Time (sec): 0.0108135 + Predicting - done. Time (sec): 0.0116608 - Prediction time/pt. (sec) : 0.0002163 + Prediction time/pt. (sec) : 0.0002332 .. figure:: Mixed_Hier_usage_TestMixedInteger_run_mixed_integer_context_example.png @@ -403,6 +434,6 @@ Example of mixed integer context usage References ---------- -.. [1] Saves, P. and Diouane, Y. and Bartoli, N. and Lefebvre, T. and Morlier, J. (2022). A general square exponential kernel to handle mixed-categorical variables for Gaussian process. AIAA Aviation 2022 Forum. +.. [1] Saves, P. and Lafage, R. and Bartoli, N. and Diouane, Y. and Bussemaker, J. and Lefebvre, T. and Hwang, J. and Morlier, J. and Martins, J. (2024). SMT 2.0: A Surrogate Modeling Toolbox with a focus on Hierarchical and Mixed Variables Gaussian Processes. Advances in Engineering Sofware. -.. [2] Audet, C., Hallé-Hannan, E. and Le Digabel, S. A General Mathematical Framework for Constrained Mixed-variable Blackbox Optimization Problems with Meta and Categorical Variables. Oper. Res. Forum 4, 12 (2023). +.. [2] Hallé-Hannan, E. and Audet, C., and Diouane, Y. and Le Digabel, S. and Saves, P. (2024). A graph-structured distance for heterogeneous datasets with meta variable, Neurocomputing. diff --git a/doc/_src_docs/applications/Mixed_Hier_usage.rstx b/doc/_src_docs/applications/Mixed_Hier_usage.rstx index 49c21a707..253b96f61 100644 --- a/doc/_src_docs/applications/Mixed_Hier_usage.rstx +++ b/doc/_src_docs/applications/Mixed_Hier_usage.rstx @@ -39,15 +39,16 @@ The design space is then defined from a list of design variables and implements Hierarchical variables ---------------------- -The design space definition uses the framework of Audet et al. [2]_ to manage both mixed-discrete variables and +The design space definition uses the framework of [2]_ to manage both mixed-discrete variables and hierarchical variables. We distinguish dimensional (or meta) variables which are a special type of variables that may affect the dimension of the problem and decide if some other decreed variables are acting or non-acting. Additionally, it is also possible to define value constraints that explicitly forbid two variables from having some values simultaneously or for a continuous variable to be greater than another. This can be useful for modeling incompatibility relationships: for example, engines can't be -installed on the back of the fuselage (vs on the wings) if a normal tail (vs T-tail) is selected. Note: this feature -is only available if ConfigSpace has been installed: `pip install smt[cs]` +installed on the back of the fuselage (vs on the wings) if a normal tail (vs T-tail) is selected. + +Note: this feature is only available if smt_design_space_ext has been installed: `pip install smt-design-space-ext` The hierarchy relationships are specified after instantiating the design space: @@ -103,6 +104,6 @@ Example of mixed integer context usage References ---------- -.. [1] Saves, P. and Diouane, Y. and Bartoli, N. and Lefebvre, T. and Morlier, J. (2022). A general square exponential kernel to handle mixed-categorical variables for Gaussian process. AIAA Aviation 2022 Forum. +.. [1] Saves, P. and Lafage, R. and Bartoli, N. and Diouane, Y. and Bussemaker, J. and Lefebvre, T. and Hwang, J. and Morlier, J. and Martins, J. (2024). SMT 2.0: A Surrogate Modeling Toolbox with a focus on Hierarchical and Mixed Variables Gaussian Processes. Advances in Engineering Sofware. -.. [2] Audet, C., Hallé-Hannan, E. and Le Digabel, S. A General Mathematical Framework for Constrained Mixed-variable Blackbox Optimization Problems with Meta and Categorical Variables. Oper. Res. Forum 4, 12 (2023). +.. [2] Hallé-Hannan, E. and Audet, C., and Diouane, Y. and Le Digabel, S. and Saves, P. (2024). A graph-structured distance for heterogeneous datasets with meta variable, Neurocomputing. diff --git a/doc/_src_docs/applications/Mixed_Hier_usage_TestMixedInteger_run_mixed_integer_context_example.png b/doc/_src_docs/applications/Mixed_Hier_usage_TestMixedInteger_run_mixed_integer_context_example.png index 155a6124b..2ce9a69c4 100644 Binary files a/doc/_src_docs/applications/Mixed_Hier_usage_TestMixedInteger_run_mixed_integer_context_example.png and b/doc/_src_docs/applications/Mixed_Hier_usage_TestMixedInteger_run_mixed_integer_context_example.png differ diff --git a/doc/_src_docs/applications/Mixed_Hier_usage_TestMixedInteger_run_mixed_integer_lhs_example.png b/doc/_src_docs/applications/Mixed_Hier_usage_TestMixedInteger_run_mixed_integer_lhs_example.png index da3cc5676..d1c9dd36d 100644 Binary files a/doc/_src_docs/applications/Mixed_Hier_usage_TestMixedInteger_run_mixed_integer_lhs_example.png and b/doc/_src_docs/applications/Mixed_Hier_usage_TestMixedInteger_run_mixed_integer_lhs_example.png differ diff --git a/doc/_src_docs/getting_started.rst b/doc/_src_docs/getting_started.rst index 39094760d..b18dcc692 100644 --- a/doc/_src_docs/getting_started.rst +++ b/doc/_src_docs/getting_started.rst @@ -34,9 +34,9 @@ Notebooks Several notebooks are available to get up to speed with SMT: * `General `_ -* `Handling of Noise `_ -* `Handling of Mixed Integer variables `_ -* `Efficient Global Optimization application `_ +* `Handling of Noise `_ +* `Handling of Mixed Integer variables `_ +* `Efficient Global Optimization application `_ Uninstalling ------------ diff --git a/doc/_src_docs/getting_started.rstx b/doc/_src_docs/getting_started.rstx index 39094760d..b18dcc692 100644 --- a/doc/_src_docs/getting_started.rstx +++ b/doc/_src_docs/getting_started.rstx @@ -34,9 +34,9 @@ Notebooks Several notebooks are available to get up to speed with SMT: * `General `_ -* `Handling of Noise `_ -* `Handling of Mixed Integer variables `_ -* `Efficient Global Optimization application `_ +* `Handling of Noise `_ +* `Handling of Mixed Integer variables `_ +* `Efficient Global Optimization application `_ Uninstalling ------------ diff --git a/setup.py b/setup.py index e95bad969..7adcad311 100644 --- a/setup.py +++ b/setup.py @@ -107,6 +107,7 @@ "smt.sampling_methods", "smt.utils", "smt.applications", + "smt.applications.tests", "smt.design_space", "smt.kernels", ], diff --git a/smt/applications/__init__.py b/smt/applications/__init__.py index d4a7a9601..190a4d6c0 100644 --- a/smt/applications/__init__.py +++ b/smt/applications/__init__.py @@ -6,6 +6,7 @@ from .vfm import VFM from .podi import PODI, SubspacesInterpolation from .cckrg import CoopCompKRG +from .tests.test_mixed_integer import TestMixedInteger __all__ = [ "VFM", @@ -20,4 +21,5 @@ "PODI", "SubspacesInterpolation", "CoopCompKRG", + "TestMixedInteger", ] diff --git a/smt/applications/tests/__init__.py b/smt/applications/tests/__init__.py index e69de29bb..55232caeb 100644 --- a/smt/applications/tests/__init__.py +++ b/smt/applications/tests/__init__.py @@ -0,0 +1,5 @@ +from .test_mixed_integer import TestMixedInteger + +__all__ = [ + "TestMixedInteger", +] diff --git a/smt/applications/tests/test_mixed_integer.py b/smt/applications/tests/test_mixed_integer.py index a5475f58e..d05f26b8f 100644 --- a/smt/applications/tests/test_mixed_integer.py +++ b/smt/applications/tests/test_mixed_integer.py @@ -801,13 +801,13 @@ def run_hierarchical_design_space_example(self): from smt.surrogate_models import KRG, MixHrcKernelType, MixIntKernelType from smt.design_space import ( CategoricalVariable, - DesignSpace, FloatVariable, IntegerVariable, OrdinalVariable, ) + from smt_design_space_ext import ConfigSpaceDesignSpaceImpl - ds = DesignSpace( + ds = ConfigSpaceDesignSpaceImpl( [ CategoricalVariable( ["A", "B"] diff --git a/smt/design_space/design_space.py b/smt/design_space/design_space.py index 28b571a63..825b3fe64 100644 --- a/smt/design_space/design_space.py +++ b/smt/design_space/design_space.py @@ -624,7 +624,7 @@ def __repr__(self): def raise_config_space(): raise RuntimeError( - "Dependencies are not installed, please install smt_design_space." + "Dependencies are not installed, please install smt_design_space_ext." ) diff --git a/tutorial/MFK/SMT_MFK_Noise.ipynb b/tutorial/MFK/SMT_MFK_Noise.ipynb index cf5c50179..2bd458597 100644 --- a/tutorial/MFK/SMT_MFK_Noise.ipynb +++ b/tutorial/MFK/SMT_MFK_Noise.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\"Open" + "\"Open" ] }, { diff --git a/tutorial/Misc/SMT_GP_Sampling.ipynb b/tutorial/Misc/SMT_GP_Sampling.ipynb index 7f6199b6f..e349f89c0 100644 --- a/tutorial/Misc/SMT_GP_Sampling.ipynb +++ b/tutorial/Misc/SMT_GP_Sampling.ipynb @@ -6,7 +6,7 @@ "metadata": {}, "source": [ "\n", - "\"Open\n" + "\"Open\n" ] }, { diff --git a/tutorial/Misc/SMT_Noise.ipynb b/tutorial/Misc/SMT_Noise.ipynb index f7c889a6e..be358be65 100644 --- a/tutorial/Misc/SMT_Noise.ipynb +++ b/tutorial/Misc/SMT_Noise.ipynb @@ -7,7 +7,7 @@ }, "source": [ "\n", - "\"Open" + "\"Open" ] }, { diff --git a/tutorial/Misc/Split_Conformal_prediction_SMT.ipynb b/tutorial/Misc/Split_Conformal_prediction_SMT.ipynb deleted file mode 100644 index cea9bd98f..000000000 --- a/tutorial/Misc/Split_Conformal_prediction_SMT.ipynb +++ /dev/null @@ -1,449 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "97ee983c", - "metadata": {}, - "source": [ - "\"Open" - ] - }, - { - "cell_type": "markdown", - "id": "aac83634", - "metadata": {}, - "source": [ - "# Split Conformal prediction example with the Toolbox SMT\n", - "\n", - "
\n", - "The French Aerospace Lab ONERA
\n", - "Information Processing and Systems Department (DTIS)
\n", - "Multidisciplinary Methods, Integrated Concepts (M2CI) Research Unit
\n", - "
\n", - "\n", - "Paul Saves ONERA/DTIS\n", - " \n", - "**Latest update:** Octover 2024 - `SMT version 2.7.0`" - ] - }, - { - "cell_type": "markdown", - "id": "e174a7f8", - "metadata": {}, - "source": [ - "In this notebook, we present an example in order to use conformal prediction within the Toolbox SMT" - ] - }, - { - "cell_type": "markdown", - "id": "a06d3197", - "metadata": {}, - "source": [ - "

\n", - "To use SMT models, please follow this link: https://github.com/SMTorg/SMT/blob/master/README.md. The documentation is available here: http://smt.readthedocs.io/en/latest/\n", - "

\n", - "\n", - "\n", - "**Reference work by Sebastien Da Veiga** *Tutorial on conformal prediction & related methods* https://sites.google.com/view/sebastien-da-veiga/etics-2024-tutorial-on-conformal-prediction-related-methods, " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "b6397fc5", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 820 - }, - "id": "b6397fc5", - "outputId": "2ac452d7-f00b-4335-b666-d41235b6b330" - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "\n", - "# from tqdm import tqdm\n", - "from smt.kernels import Constant\n", - "from smt.kernels import PowExp\n", - "from smt.surrogate_models import KRG" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "1318c1fb", - "metadata": { - "id": "1318c1fb" - }, - "outputs": [], - "source": [ - "# Quantile functions\n", - "def quantile_cp(z, alpha):\n", - " n = len(z)\n", - " q = np.sort(z)[int(np.ceil((1 - alpha) * (n + 1)) - 1)]\n", - " return q\n", - "\n", - "\n", - "def quantile_cp_minus(z, alpha):\n", - " n = len(z)\n", - " q = np.sort(z)[int(np.floor(alpha * (n + 1)) - 1)]\n", - " return q" - ] - }, - { - "cell_type": "markdown", - "id": "0bf7a515", - "metadata": { - "id": "0bf7a515" - }, - "source": [ - "### Data generation" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "f5dbb172", - "metadata": { - "id": "f5dbb172" - }, - "outputs": [], - "source": [ - "# Function to generate random heteroskedastic data\n", - "def make_random_data(n, std_dev):\n", - " x = np.random.uniform(-1, 1, n)\n", - " y = x**3 + 2 * np.exp(-6 * (x - 0.3) ** 2)\n", - " y = y + np.random.normal(0, std_dev * np.abs(x), n)\n", - " return pd.DataFrame({\"x\": x, \"y\": y})\n", - "\n", - "\n", - "# Generate train and test data\n", - "np.random.seed(12345)\n", - "ntrain = 1000\n", - "ntest = 1000\n", - "nvisu = 1000\n", - "std_dev = 1 / 5\n", - "train_data = make_random_data(ntrain, std_dev)\n", - "test_data = make_random_data(ntest, std_dev)\n", - "visu_data = pd.DataFrame({\"x\": np.linspace(-1, 1, nvisu)})" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "a9e28024", - "metadata": { - "id": "a9e28024" - }, - "outputs": [], - "source": [ - "# Sample split\n", - "ncal = 100\n", - "npretrain = ntrain - ncal\n", - "train_data = train_data.sample(frac=1).reset_index(drop=True)\n", - "pretrain_data = train_data.iloc[:npretrain]\n", - "cal_data = train_data.iloc[npretrain:]\n", - "\n", - "alpha = 0.1" - ] - }, - { - "cell_type": "markdown", - "id": "9b601dce", - "metadata": { - "id": "9b601dce" - }, - "source": [ - "### Rescaled scores with GP" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "8b7e9c10", - "metadata": { - "id": "8b7e9c10" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "___________________________________________________________________________\n", - " \n", - " Kriging\n", - "___________________________________________________________________________\n", - " \n", - " Problem size\n", - " \n", - " # training points. : 900\n", - " \n", - "___________________________________________________________________________\n", - " \n", - " Training\n", - " \n", - " Training ...\n", - " Training - done. Time (sec): 17.8777888\n", - "___________________________________________________________________________\n", - " \n", - " Evaluation\n", - " \n", - " # eval points. : 900\n", - " \n", - " Predicting ...\n", - " Predicting - done. Time (sec): 0.0238357\n", - " \n", - " Prediction time/pt. (sec) : 0.0000265\n", - " \n", - "___________________________________________________________________________\n", - " \n", - " Kriging\n", - "___________________________________________________________________________\n", - " \n", - " Problem size\n", - " \n", - " # training points. : 900\n", - " \n", - "___________________________________________________________________________\n", - " \n", - " Training\n", - " \n", - " Training ...\n", - " Training - done. Time (sec): 16.2507682\n", - "___________________________________________________________________________\n", - " \n", - " Evaluation\n", - " \n", - " # eval points. : 100\n", - " \n", - " Predicting ...\n", - " Predicting - done. Time (sec): 0.0039582\n", - " \n", - " Prediction time/pt. (sec) : 0.0000396\n", - " \n", - "___________________________________________________________________________\n", - " \n", - " Evaluation\n", - " \n", - " # eval points. : 100\n", - " \n", - " Predicting ...\n", - " Predicting - done. Time (sec): 0.0020697\n", - " \n", - " Prediction time/pt. (sec) : 0.0000207\n", - " \n", - "___________________________________________________________________________\n", - " \n", - " Evaluation\n", - " \n", - " # eval points. : 1000\n", - " \n", - " Predicting ...\n", - " Predicting - done. Time (sec): 0.0267797\n", - " \n", - " Prediction time/pt. (sec) : 0.0000268\n", - " \n", - "___________________________________________________________________________\n", - " \n", - " Evaluation\n", - " \n", - " # eval points. : 1000\n", - " \n", - " Predicting ...\n", - " Predicting - done. Time (sec): 0.0206594\n", - " \n", - " Prediction time/pt. (sec) : 0.0000207\n", - " \n" - ] - } - ], - "source": [ - "k = PowExp([0.01]) * Constant([0.01])\n", - "\n", - "\n", - "gp = KRG(corr=\"squar_exp\", noise0=[1e-6], hyper_opt=\"Cobyla\", n_start=20)\n", - "\n", - "# Pretraining Gaussian Process\n", - "X_pretrain = pretrain_data[\"x\"].values.reshape(-1, 1)\n", - "y_pretrain = pretrain_data[\"y\"].values\n", - "gp.set_training_values(X_pretrain, y_pretrain)\n", - "gp.train()\n", - "gp_pred_pretrain = gp.predict_values(X_pretrain)[:, 0]\n", - "gp_std_pretrain = np.sqrt(gp.predict_variances(X_pretrain))[:, 0]\n", - "\n", - "# Compute residuals and fit another GP on residuals\n", - "res_gp_pred_pretrain = np.abs(y_pretrain - gp_pred_pretrain)\n", - "gp_res = KRG(corr=\"squar_exp\", noise0=[1e-6], hyper_opt=\"Cobyla\", n_start=20)\n", - "gp_res.set_training_values(X_pretrain, res_gp_pred_pretrain)\n", - "gp_res.train()\n", - "\n", - "# Predictions on calibration data\n", - "X_cal = cal_data[\"x\"].values.reshape(-1, 1)\n", - "y_cal = cal_data[\"y\"].values\n", - "gp_pred_cal = gp.predict_values(X_cal)[:, 0]\n", - "gp_std_cal = np.sqrt(gp.predict_variances(X_cal))[:, 0]\n", - "gp_res_pred_cal = gp_res.predict_values(X_cal)[:, 0]\n", - "\n", - "res_gp_pred_cal = np.abs(y_cal - gp_pred_cal) / gp_res_pred_cal\n", - "gp_q_cal = quantile_cp(res_gp_pred_cal, alpha)\n", - "\n", - "# Predictions for visualization data\n", - "X_visu = visu_data[\"x\"].values.reshape(-1, 1)\n", - "gp_pred_visu = gp.predict_values(X_visu)[:, 0]\n", - "gp_std_visu = np.sqrt(gp.predict_variances(X_visu))[:, 0]\n", - "gp_res_pred_visu = gp_res.predict_values(X_visu)[:, 0]\n", - "\n", - "# Compute lower and upper bounds for the GP with rescaling based on residuals\n", - "gp_pred = pd.DataFrame(\n", - " {\n", - " \"x\": visu_data[\"x\"],\n", - " \".pred\": gp_pred_visu,\n", - " \".pred_lower\": gp_pred_visu - gp_res_pred_visu * gp_q_cal,\n", - " \".pred_upper\": gp_pred_visu + gp_res_pred_visu * gp_q_cal,\n", - " }\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "93ba5a91", - "metadata": { - "id": "93ba5a91" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "___________________________________________________________________________\n", - " \n", - " Evaluation\n", - " \n", - " # eval points. : 100\n", - " \n", - " Predicting ...\n", - " Predicting - done. Time (sec): 0.0037529\n", - " \n", - " Prediction time/pt. (sec) : 0.0000375\n", - " \n", - "___________________________________________________________________________\n", - " \n", - " Evaluation\n", - " \n", - " # eval points. : 1000\n", - " \n", - " Predicting ...\n", - " Predicting - done. Time (sec): 0.0253129\n", - " \n", - " Prediction time/pt. (sec) : 0.0000253\n", - " \n" - ] - } - ], - "source": [ - "# GP with rescaling from posterior standard deviation\n", - "gp_pred_cal2 = gp.predict_values(X_cal)[:, 0]\n", - "gp_std_cal2 = np.sqrt(gp.predict_variances(X_cal))[:, 0]\n", - "res_gp_pred_cal2 = np.abs(y_cal - gp_pred_cal2) / gp_std_cal2\n", - "gp_q_cal2 = quantile_cp(res_gp_pred_cal2, alpha)\n", - "\n", - "gp_pred_visu2 = gp.predict_values(X_visu)[:, 0]\n", - "gp_std_visu2 = np.sqrt(gp.predict_variances(X_visu))[:, 0]\n", - "\n", - "gp_pred2 = pd.DataFrame(\n", - " {\n", - " \"x\": visu_data[\"x\"],\n", - " \".pred\": gp_pred_visu2,\n", - " \".pred_lower\": gp_pred_visu2 - gp_std_visu2 * gp_q_cal2,\n", - " \".pred_upper\": gp_pred_visu2 + gp_std_visu2 * gp_q_cal2,\n", - " }\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "b02c712a", - "metadata": { - "id": "b02c712a", - "outputId": "fd8c0ced-a199-418e-a7f8-70247cdc1361" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABtsAAAHkCAYAAABfbZDPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdf7H8dfM7GzLppBC7yWhS1dEBREFBQXBhop6NhR7R8879fS8n3fqKWDviv3EgmLBioKCIgiC0ntNQvq22Z35/fHNbhISEBAj6Of5eOwj7uzslO8GH/vO51s0x3EchBBCCCGEEEIIIYQQQgghhBB7Tf+9L0AIIYQQQgghhBBCCCGEEEKIg5UU24QQQgghhBBCCCGEEEIIIYTYR1JsE0IIIYQQQgghhBBCCCGEEGIfSbFNCCGEEEIIIYQQQgghhBBCiH0kxTYhhBBCCCGEEEIIIYQQQggh9pEU24QQQgghhBBCCCGEEEIIIYTYR1JsE0IIIYQQQgghhBBCCCGEEGIfSbFNCCGEEEIIIYQQQgghhBBCiH0kxTYhhBBCCCGEEEIIIYQQQggh9pEU24QQQtSwceNG8vLymDZt2l6/d+7cueTl5TF37tzf4Mr++KT9hBBCCCHEn4lkj9+PtJ/4rfyaf9f1aeLEiQwePPj3vgwhxB+I6/e+ACGEEGJ/KCws5JlnnuGLL75g48aNxGIxGjduTJ8+fRgzZgx9+vT5vS/xgDZu3DjmzZuXfJ6enk6LFi0YO3Yso0ePRtf/XP1zNm7cyDHHHAPAVVddxYQJE2rtc9111/Huu+/i9/tZsGBBncc55ZRTWLx4MbfddhtnnnlmrdenTZvGzTffnHzudrtJT08nLy+PgQMHMnr0aAKBwH66KyGEEEIIsT9I9vh1JHvUVD17AOi6TqNGjejSpQuXX345nTp12u/nfPHFF/H5fIwePXq/H1sIIf6spNgmhBDioLdo0SIuvvhiKioqGD58OGeccQZut5uNGzfy8ccfM23aNKZOnUrfvn1/70vdrb59+7Jo0SJM0/xdzt+4cWOuvfZaAIqKinjrrbf461//ytq1a7n++ut/l2v6vXk8Ht57771axbZgMMinn36Kx+PZ5XvXrl3L4sWLadasGdOnT6+z2JZw5ZVX0rx5c2KxGAUFBcybN4+7776bZ599locffpiOHTvut3sSQgghhBD7TrLH/iHZo7YRI0Zw1FFHYds2q1at4uWXX2bWrFm89tpr+73g9vLLL9OgQYPfpNjWrFkzFi1ahMslf3YWQvy5yP/1hBBCHNRKSkqYMGECLpeLt956i3bt2tV4/eqrr+a9997bbVHkQKHr+u96nampqYwcOTL5/PTTT2fYsGG8+OKLXHXVVXUGcdu2sSzroGjffTFw4EA++ugjfv755xoFr08++QTLsjjiiCN2OfXOO++8Q1ZWFhMnTuTKK69k48aNNG/evM59jzrqKLp165Z8Pn78eL7++msuueQSJkyYwIwZM/B6vfv35oQQQgghxF6R7LH/SPaorXPnzjXapFevXlx66aW8/PLL/OMf//gdr2zPxGIxbNvG7Xbv188oGAzi9/v32/GEEOK38ucaly2EEAeByZMnk5eXx5o1a7j++uvp3bs3hx12GA888ACO47BlyxYuvfRSevXqxYABA3j66adrHaOwsJBbbrmFww8/nG7dunHSSSfx5ptv1tqvtLSUiRMn0rt3b/r06cNNN91EWVlZnde1atUqrrzySvr160e3bt0YPXo0n3zyyX6//731yiuvkJ+fzy233FIr7AJomsaIESPo3r17ctumTZu4/fbbGTp0KN27d+fQQw9NFkOqS3wWO5s2bRp5eXk19l+8eDEXXHABhx56KN27d2fw4ME1pgcEeO+99xg9ejQ9e/akV69enHjiiTz33HPJ1+taN+G7777jyiuvZNCgQXTt2pWBAwdy9913Ew6Haxx74sSJ9OzZk23btjFhwgR69uzJYYcdxj333EM8Ht/D1qzJ5/NxyCGHEAwG2bFjBwB5eXn84x//4J133mH48OF069aNL7/8EoClS5dy4YUX0qtXL3r27Mm5557LwoULax23tLSUu+++m8GDB9O1a1eOOuoobrzxxuQ5AKLRKJMmTeLYY49N3ve///1votFojWPNnj2bsWPH0qdPH3r27MnQoUO5//77a+zzwgsvMHz4cA455BD69u3L6NGjmT59+h61QY8ePWjevHmt/adPn84RRxxBRkbGLt/77rvvMnToUAYNGkRqairvvvvuHp0zoX///kyYMIFNmzbxzjvv7NV7hRBCCCH2hGSPvSPZQ5Hs8dtkj50ddthhADU++/fff5/Ro0cnf5euv/56tm3bVuN9+fn53HzzzRx11FF07dqVI444gksvvTR5nMGDB7NixQrmzZtHXl4eeXl5jBs3rkab/fOf/2TgwIF07dqVY489lscffxzbtpP7JNZle+qpp3j22WcZMmQI3bp1Y9WqVbtcs+3rr7/mzDPPpEePHvTp04dLL72UVatW1dgn8e9g5cqVXHfddfTt23e3M4RYlsWUKVM47rjj6NatG4ceeihjx45l9uzZNfb7+OOPGTFiBN26dWPEiBHMnDlzTz4CIYTYKzKyTQghDlDXXHMN7dq147rrruOLL77gkUceISMjg1deeYXDDjuM66+/nunTp3PPPffQrVu35DQl4XCYcePGsX79es466yyaN2/OBx98wMSJEyktLeXcc88FwHEcJkyYwPz58znjjDNo164dM2fO5Kabbqp1LStWrGDs2LE0atSIiy66CL/fz/vvv89ll13G5MmTOfbYY/fq3izL2mWw3llGRsZu5+z/7LPP8Hq9e3UNixcvZsGCBQwfPpzGjRuzadMmXn75Zc455xzee+89fD7fHh8L1B8YLrjgAho0aMDFF19MWloaGzdurPEFfvbs2Vx77bX0798/OS3K6tWr+f7775OfSV0++OADwuEwY8eOJSMjg0WLFjF16lS2bt3KpEmTauwbj8e54IIL6N69OzfeeCNff/01Tz/9NC1atNhtQNmdjRs3YhgGaWlpyW3ffPMN77//PmeddRYNGjSgWbNmrFixgrPOOouUlBQuvPBCXC4Xr776KuPGjWPq1KkccsghAFRUVHDWWWexatUqxowZQ+fOnSkqKuLTTz9l27ZtZGZmYts2l156KfPnz+e0006jXbt2LF++nOeee461a9fy8MMPA+r3cvz48eTl5XHllVfidrtZt24d33//ffJaX3vtNe666y6GDh3KOeecQyQSYdmyZfzwww+ceOKJe9QGI0aM4J133uH6669H0zR27NjB7Nmz+fe//50M+zv74YcfWLduHXfffTdut5tjjz2W6dOnc8kll+xV+48cOZL777+fr776itNOO22v3iuEEEIIsackeyiSPSR7/N7Zo7r169cDJDv4JdZ77tatG9deey2FhYU8//zzfP/997z11lvJdrviiitYuXIlZ599Ns2aNUvmly1bttC8eXNuueUW7rzzTvx+fzKfZGdnAxAKhTj77LPZtm0bZ5xxBk2aNGHBggXcf//95Ofn89e//rXGNU6bNo1IJMJpp52WXH+6elEuYc6cOVx00UU0b96cyy+/nHA4zNSpUxk7dizTpk2rNQPIVVddRatWrbjmmmtwHGeXbTRlyhQee+wxTj31VLp37055eTk//vgjS5YsYcCAAQB89dVXXHHFFbRv357rrruOoqIibr75Zho3brzXn4kQQuyWI4QQ4oAyadIkJzc31/nb3/6W3BaLxZyjjjrKycvLcx577LHk9pKSEqd79+7OTTfdlNz27LPPOrm5uc7bb7+d3BaNRp3TTz/d6dGjh1NWVuY4juPMnDnTyc3NdZ544oka5znzzDOd3Nxc54033khuP/fcc50RI0Y4kUgkuc22bef00093jjvuuOS2b775xsnNzXW++eab3d5jYr89eWzYsGG3x+rbt68zcuTIWtvLysqcwsLC5KOioiL5WigUqrX/ggULnNzcXOfNN99Mbkt8Fjt74403alxboi0XLVq0y+u86667nF69ejmxWGyX+9TVfnVd62OPPebk5eU5mzZtSm676aabnNzcXGfKlCk19h01apRz8skn7/KcCWeffbYzbNiwZHutXLnSufPOO53c3Fxn/Pjxyf1yc3Odjh07OitWrKjx/gkTJjhdunRx1q9fn9y2bds2p2fPns5ZZ52V3Pbggw86ubm5zkcffVTrGmzbdhzHcd566y2nY8eOzrffflvj9ZdfftnJzc115s+f7ziO4zzzzDNObm6uU1hYuMv7uvTSS53hw4f/4v3vbMOGDU5ubq7z5JNPOsuXL3dyc3OT1zN16lSnR48eTjAYdG666SanR48etd7/j3/8wxk4cGDynr766isnNzfXWbp0aY39Er9Lu/vd6d27tzNq1Ki9vgchhBBCiF8i2UOyh2SPAyd7TJ482SksLHTy8/OduXPnOqNGjXJyc3OdDz/80IlGo07//v2dESNGOOFwOPnezz77zMnNzXUefPBBx3HUv9NEjtmd4cOHO2effXat7Q899JDTo0cPZ82aNTW233vvvU6nTp2czZs317jmXr161WqTxGvV/12PHDnS6d+/v1NUVJTc9tNPPzkdO3Z0brzxxuS2xL+Da6+9dveNVumkk05yLr744t3uM3LkSGfAgAFOaWlpclsinx199NF7dB4hhNgTMrJNCCEOUKecckryvw3DoGvXrmzdurXG9rS0NNq0acOGDRuS22bNmkVOTg4jRoxIbjNNk3HjxnHttdfy7bffcvTRRzNr1ixcLhdjx46tcZ6zzz6b7777LrmtuLiYb775hiuvvJLy8vIa13jEEUcwefJktm3bRqNGjfb43jp27MgzzzyzR/vm5OTs9vXy8vI652+/8cYba0w1c9ZZZ/H3v/8doMbaV5ZlUV5eTsuWLUlLS2Pp0qWMGjVqj64tITU1FYDPP/+cjh071rm+QFpaGqFQiNmzZ3PUUUft8bGrX2swGCQcDtOzZ08cx2Hp0qU0bdq0xv7VP0+A3r177/EUhKtXr6Z///7J55qmMWjQIO6+++4a+/Xt25f27dsnn8fjcWbPns2QIUNo0aJFcnvDhg0ZMWIEr7/+OuXl5QQCAT766CM6duxYZ29gTdMA1aO2Xbt2tG3btsb0LolpVObOnUuvXr2SPTc/+eQTxowZU2cv5LS0NLZu3cqiRYtqTOezNzp06EBeXh7vvfceffr04d133+WYY47ZZS/kWCzGjBkzGDVqVPKeDjvsMLKysnjnnXf2enFzv99PRUXFPl27EEIIIcSekOyhSPaQ7JHwe2SPyZMnM3ny5OTzQCDA9ddfz3HHHceCBQsoLCzk8ssvr7Ee2qBBg2jbti2ff/45V155JV6vF9M0mTdvHqeccgrp6el7dQ0ffPABvXv3Ji0trUZ7HH744Tz++ON8++23nHTSScntxx13HJmZmbs95vbt2/npp5+48MILa0zD37FjRw4//HC++OKLWu8544wz9uh609LSWLFiBWvXrqV169a7PPfFF1+c/LcDMGDAANq3b08oFNqj8wghxJ6QYpsQQhygdg4yqampeDyeWl9kU1NTKS4uTj7ftGkTrVq1qvXlP7GmwObNm5P75eTkkJKSUmO/Nm3a1Hi+fv16HMfhwQcf5MEHH6zzWgsLC/cq8Kanp3P44Yfv8f67k5KSQjAYrLX9yiuv5OyzzwbgL3/5S43XwuEwjz32GNOmTWPbtm01pqXY0ylmquvXrx9Dhw5lypQpPPvss/Tr148hQ4Zw4okn4na7ATjzzDN5//33ueiii2jUqBEDBgzg+OOP/8Xwu3nzZiZNmsSnn35KSUlJjdd2/gNEXb8f6enptd63K82aNeOuu+5C0zTcbjetW7cmKyur1n47T/GxY8cOQqFQrd8dUL93tm2zZcsWOnTowPr16znuuON2ex3r1q1j1apVNcJ3dYWFhQCccMIJvP7669x6663cd9999O/fn2OPPZZhw4Ylf/8vuugi5syZw6mnnkqrVq0YMGAAI0aMoHfv3nvUJgkjRozgmWee4bzzzmPBggW7nQ5y9uzZ7Nixg+7du7Nu3brk9kMPPZT33nuPG264YbfTE+0sGAzW+TkIIYQQQuwvkj32jGSPKpI99n/2OP300xk2bBiappGWlkaHDh2Sn2ni31Jd9922bVvmz58PgNvt5vrrr+eee+5hwIABHHLIIQwaNIhRo0b9YjE50R7Lli3bZXtUL8BB7c+nLru79nbt2vHVV18RDAZrFLL35Lig/u1NmDCBoUOHkpubyxFHHMHIkSPp2LFjjXO3atWq1nvbtGnD0qVL9+g8QgixJ6TYJoQQB6i6/hhvGEad+zq7mcP810rMt37++edz5JFH1rlPy5Yt9+qY0Wh0j0NYZmbmLu8bVLD4+eefsSyrRq/OxJfrutx5551MmzaNc889lx49epCamoqmabXmg0/0dtzZzot+a5rGpEmTWLhwIZ999hlffvklt9xyC8888wyvvvoqKSkpZGVl8dZbb/HVV18xa9YsZs2axbRp0xg1ahT33HPPLs/zl7/8hZKSEi688ELatm2L3+9n27ZtTJw4sdZc+Ltrpz3h9/v36A8R1Xu8/hZs2yY3N7fWIu8Jibn1vV4vL774InPnzuXzzz/nyy+/ZMaMGbz66qs8/fTTGIZBu3bt+OCDD5Kvf/TRR7z00ktcdtllXHnllXt8TSNGjOD+++/n1ltvJSMjIzn/f10SvXmvvvrqOl+fN29esqfsL9m6dStlZWV7/W9MCCGEEGJvSPZQJHtI9thZfWaPVq1a7ZfC8HnnncfgwYP5+OOP+eqrr3jwwQd5/PHHee655+jcufNu32vbNgMGDODCCy+s8/WdR4/9Vp9P9dF7u9O3b19mzpzJJ598wuzZs/nf//7Hc889xx133MGpp576m1ybEELsihTbhBDiD6ZZs2YsW7YM27ZrhObVq1cDVb1WmzVrxjfffENFRUWNHqZr1qypcbzE1Bymae63HqELFizgnHPO2aN9P/nkk932ahs0aBALFy5k5syZnHDCCXt0zA8//JBRo0YxceLE5LZIJFKrZ2liqpDS0tIai3QnesftrEePHvTo0YNrrrmG6dOnc/311zNjxozkl3y3283gwYMZPHgwtm1z++238+qrrzJhwoQ6e9otX76ctWvXcs8999SYXmb27Nl7dJ/1JTMzE5/PV+t3B9Tvna7rNGnSBFB/HFmxYsVuj9eyZUt+/vln+vfvv8s/OiTouk7//v3p378/N998M48++ij//e9/mTt3bvL31e/3c8IJJ3DCCScQjUa54oorePTRRxk/fvweh7imTZvSq1cv5s2bx9ixY3G56v4KFQwG+fTTTznhhBMYOnRordfvuusupk+fvsfFtrfffhtQ0yYJIYQQQhxoJHv8Mske+9efIXvUJfFvac2aNbVGna1Zs6bW6NSWLVty/vnnc/7557N27VpGjRrF008/zb333gvsurjbsmVLgsHgfvv3t/O172z16tU0aNCgzulZ91RGRgZjxoxhzJgxVFRUcPbZZzN58mROPfXU5LmrzziSUNf1CCHEr7HncxgJIYQ4KBx11FHk5+czY8aM5LZYLMYLL7yA3++nb9++yf1isRgvv/xycr94PM7UqVNrHC8rK4t+/frx6quvsn379lrn23kaiT2RWDdhTx6/NNXF2LFjyc7O5l//+ledX5br6nlbVy/MF154oVav0USv2W+//Ta5LRgM8tZbb9XYr6SkpNZ5EutyRaNRAIqKimq8rus6eXl5NfbZWeIPFtWP7TgOzz//fJ37/14Mw2DAgAF88sknbNy4Mbm9oKCAd999l969exMIBAA1p//PP//MzJkzax0ncZ/HH38827Zt47XXXqu1TzgcTk7dU30Ko4Rfane32027du1wHAfLsvbqPq+++mouv/xyxo0bt8t9Zs6cSTAY5KyzzmLYsGG1HkcffTQfffTRLj/z6r7++msefvhhmjdvXmNdBCGEEEKIA4Vkj5oke/z2/izZY2ddu3YlKyuLV155pcZn+MUXX7Bq1SoGDRoEQCgUIhKJ1Hhvy5YtSUlJqfE+n89HaWlprfMcf/zxLFiwgC+//LLWa6WlpcRisb2+9oYNG9KpUyfeeuutGudcvnw5s2fPZuDAgXt9zISd2zwlJYWWLVsm7zVx7jfffLNGgXv27NmsXLlyn88rhBB1kZFtQgjxB3P66afz6quvMnHiRJYsWUKzZs348MMP+f7777nllluSwWPw4MH06tWL++67j02bNtG+fXs++uijOtcNuO222zjzzDM58cQTOe2002jRogUFBQUsXLiQrVu37vEi2An7c92EjIwMpkyZwiWXXMLIkSMZPnw4Xbt2xTRNtmzZwgcffACQ7N0Iqkfq22+/TSAQoH379ixcuJA5c+bUWKwZ1KLJTZs25a9//SurV6/GMAzeeOMNGjRoUKOH6ZtvvsnLL7/MkCFDaNmyJRUVFbz22msEAoHkugi33norJSUlHHbYYTRq1IjNmzczdepUOnXqlFzTYmdt27alZcuW3HPPPWzbto1AIMCHH35YZyj6vV199dXMmTOHM888kzPPPBPDMHj11VeJRqPccMMNyf0uuOACPvzwQ6666irGjBlDly5dKCkp4dNPP+WOO+6gY8eOjBw5kvfff5/bbrstuSB5PB5n9erVfPDBBzz55JN069aNhx56iO+++46BAwfSrFkzCgsLeemll2jcuHFyXYQLLriA7OxsevXqRVZWFqtXr2bq1KkMHDgw+W9hT/Xr149+/frtdp/p06eTkZFBz54963x98ODBvPbaa3z++ec11o+YNWsWq1evJh6PU1BQwNy5c5k9ezZNmzblkUce+VW9YIUQQgghfiuSPSR7/B7+DNljZ6Zpcv3113PzzTdz9tlnM3z4cAoLC3n++edp1qwZ5513HgBr167lvPPOY9iwYbRv3x7DMPj4448pKChg+PDhyeN16dKFl19+mYcffphWrVqRmZlJ//79ueCCC/j000+55JJLOPnkk+nSpQuhUIjly5fz4Ycf8sknn9Raq29P3HjjjVx00UWcfvrpnHLKKYTDYaZOnUpqaiqXX375PrfL8OHD6devH126dCEjI4PFixfz4YcfJtdQBLj22msZP348Z555JmPGjKG4uJipU6fSoUOHOtdgFEKIfSXFNiGE+IPxer288MIL3Hvvvbz55puUl5fTpk0b/vWvfzF69Ojkfrqu88gjj3D33XfzzjvvoGkagwcPZuLEiTWmDQFo3749b7zxBlOmTOHNN9+kuLiYzMxMOnfuzGWXXVbPd1hbz549effdd3nmmWf44osvmDFjBrZt06hRI3r37s2dd95Jnz59kvv/9a9/Rdd1pk+fTiQSoVevXjzzzDO15qU3TZMpU6Zwxx138OCDD5KTk8O5555LWlpajTn9+/Xrx+LFi5kxYwYFBQWkpqbSvXt37r333uRUOCeddBKvvfYaL730EqWlpeTk5HD88cdzxRVX1LlGRuL8jz76KHfddRePPfYYHo+HY489lrPOOouRI0f+Bi257zp06MCLL77Ifffdx2OPPYbjOHTv3p3//Oc/HHLIIcn9UlJSePHFF5k8eTIzZ87kzTffJCsri/79+ycXutd1nYceeohnn32Wt99+m5kzZ+Lz+WjevDnjxo1LLqw9ePBgNm3axBtvvEFRURENGjSgX79+XHHFFaSmpgLqD0DTp0/nmWeeIRgM0rhxY8aNG8eECRP2exsUFhby9ddfM3z48F2uYdG/f398Ph/vvPNOjWLbpEmTAPWZZ2RkkJubyy233MLo0aN/dTAXQgghhPitSPaQ7PF7+LNmj9GjR+P1enniiSe499578fv9DBkyhBtuuCE59Wjjxo0ZPnw4X3/9Ne+88w6GYdC2bVseeOCBGtPcX3bZZWzevJknn3ySiooK+vXrl8wqL7zwAo899hgffPABb731FoFAgNatW9e41711+OGH8+STTzJp0iQmTZqEy+Wib9++3HDDDcnf230xbtw4Pv30U2bPnk00GqVp06ZcffXVXHDBBcl9jjrqKB588EEeeOAB7rvvPlq2bMm//vUvPvnkE+bNm7fP5xZCiJ1pzm+5sq0QQgghhBBCCCGEEEIIIYQQf2CyZpsQQgghhBBCCCGEEEIIIYQQ+0iKbUIIIYQQQgghhBBCCCGEEELsIym2CSGEEEIIIYQQQgghhBBCCLGPpNgmhBBCCCGEEEIIIYQQQgghxD6SYpsQQgghhBBCCCGEEEIIIYQQ+0iKbUIIIYQQQgghhBBCCCGEEELsIym27UfLli1j2bJlv/dlCCGEEEIIIcRvQjKPEEIIIYQQQtQmxbb9KBqNEo1Gf+/LqCESiTB//nwikcjvfSl/CtLe9Uvau35Je9cvae/6J21ev6S965e0d/36I7e3ZB4h7V2/pL3rl7R3/ZL2rl/S3vVP2rx+SXvXL2nv2qTY9gcXj8dr/BS/LWnv+iXtXb+kveuXtHf9kzavX9Le9Uvau35Je9cvae/6Je1dv6S965e0d/2S9q5f0t71T9q8fkl71y9p79qk2CaEEEIIIYQQQgghhBBCCCHEPpJimxBCCCGEEEIIIYQQQgghhBD7SIptQgghhBBCCCGEEEIIIYQQQuwjKbYJIYQQQgghhBBCCCGEEEIIsY+k2CaEEEIIIYQQQgghhBBCCCHEPpJimxBCCCGEEEIIIYQQQgghhBD7SIptQgghhBBCCCGEEEIIIYQQQuwjKbYJIYQQQgghhBBCCCGEEEIIsY+k2CaEEEIIIYQQQgghhBBCCCHEPpJimxBCCCGEEEIIIYQQQgghhBD7SIptQgghhBBCCCGEEEIIIYQQQuwjKbYJIYQQQgghhBBCCCGEEEIIsY9cv/cFCCGEEEIc7GwbLEv91HUwTfXzYD+XEEIIIYQQQtR3BpHMI4Q4GEmxTQghhBDiV7AsCIdrbotGwetVofBgPZcQQgghhBBC1HcGkcwjhDhYSZ8AIYQQQoh9ZNu1g2BCOKxePxjPJYQQQgghhBD1nUEk8wghDmYysk0IIYQQYh9ZVt3bE9OexOPg8+2faU92da7qr3s8v+4cQgghhBBCCJGwy7wTd4iFSnBKC/Hqhbjiheh2BdiWejgx0E0wfOrhSgFvQ/A2AncmaNpena/665J5hBAHKim2CSGEEELso7p6Vlaf9sRxwDD2z7Qnv9SL03H2/dhCCCGEEEIIsTM7GkQvXoJRugi9dDF6cDVUrEEPrUWPl+/bQTUX+JtBoD2kdlCPjK6Q2RvbztrtWyXzCCEOZFJsE0IIIYTYRzuPVtt52pPqHTbDYVV429cRbr/0vl10DhVCCCGEEEKIX+Y4ULEO8r+C/C8h/yu8JT+jsZ/nbnRi6jwV62DbJzVe8vpbEkvrQzzzCOLZg7DTuoNmJF+XzCOEOJBJsU0IIYQQYh+Zphq1lpg2MhSqOfWJy6VeSxTKfs20J4lz7e51IYQQQgghhNhj8TBs+wI2v6ce5atrvFy9tmV7GmF5c4mabYh52hDztMQVyEHzZGL4s9DMVEyPicdnqtFrtgXxIMRCECuD8HYIb4PwVqhYD2Ur1KNiHaCGrGnB9ZjB9ZhbpwHgmBnEsgYRa3Qi8UYjMFMa1lPDCCHE3pNimxBCCCHEPtJ1NVqtrEw9D4WgvHI2lfR0iMXUIzGFZPVpTxIFukQx7pfWddN1dZy6Fgz3en/9mnBCCCGEEEKIP4FYENZNh3WvwJaPVEFsZ97GkHMEZB9KLLUHZUZ3Qk5DwmGSD68XUlKqOv15XeDyAO6qw9h2pso8Jugpu8g8sRCU/Ag75sOO73EK5qKVLAJAs4oxt76FufUtHDS07P7QfCS0PBUCbX6T5hFCiH0lxTYhhBBCiH1k2xCPq5AZiajnbrca0RaPq0JbYmrJQEBth5rruiXsybpupqmKe5alCnea9stFusR17k1hTwghhBBCCPEHYsfRt39Cqy2P41v1OcR2Wm/NlQpNjoOmJ0DDgRBom5yzUbdBLwO3VZVv/H6VJyIRtVsi8+i6ykO6vheZx+WDrL7qgRpNZ4cKiW+ZhZb/GfrW99ErVqLhQMEc9Vh4EzQ8CtqcAy1OAXe6ZB4hxO9Oim1CCCGEEPsoMWWkrqtHIADByo6hsXAFkdJ1+JyNGLFCjG070MwdxCjHiVl4bEutV6CboHtxDB8x3Y/jy8HxNETzNcSV2hQ9pSm2o+9zcNzXwp4QQgghhBDiIBfOh1VPwcpH8Vasw1v9NX8LVahqNkKNYjPcdR7CslT28Hhqr1FtWSpbuCvfGo1CRYV6vqsp8IPBqv2rZ5uaxbIszNYno7c9WfUyLP0ZNr6tHoVzAQe2z1KP7y7HbjaaUIvLsBv0TxYJJfMIIeqbFNuEEEIIIVChLhbTCYXU6LE9HTFGtAij9Ac8hYvwlS4ip/xHjPBqXLH8/XJdju7F8bfFSGkHqV2w03tRkdoTLbUthkvfbfFt5zBcXTis7lN6ewohhBBCCPEHUzAPlk+G9a+BXVX1iumpxJudAq3PhZwjMd36nmWeajyeqlk9IhGVRWxbZYtIROWLioqqnFE9ryQ6AlZfyzoaVe+Nx2ueJ5FXDEND93bC7NQJvctECG6EtS/C6ueg9CeIh9HXv0TK+peIp/ci2vpyYs3OAMMnmUcIUa+k2CaEEEKIP6XqPSfjcbXuWiSipkaJRnfTEzK4CbZ9Cvlf4dk+G1/pkj0+Z1xPJa6lVo5mc6HpLjTHQnNCaPEwWrwczbFqvEezwxjlS6F8Ka5t06uu30jDzuhNPGsg4eyjMRsfiun11HivVfNQtVQPuUIIIYQQQoiDmOPA1o9h6b9g22c1XopnD6S88fn8sKMjebld8fv9YEHU+uXRX9ULVYnCmWGoglr1Tn+OU1VMKypSo9cSU+m7XOo80WhVh8DErB2JNbBTUqqOVX12jsT2ZD7zN4fON0GnG6Hoe+IrnkVf9zxarBSj5Ht8P5yPvfQGrDaXE21zJZY7UzKPEKJeSLFNCCGEEH861cObbaugGApBPK7V2C8cBkOLoRfNhU3vweYZUPxD8vWdO0hanrZYKd2IuHOJmK2x3G2Ie1sQdnKIuzIpKTUpLlbnzMpS4dPjUeHR5YJoxMFjlOJlO0Z0G05wI2Z4Jd7YKlyhFRhli9BiZerc8VL0ws9wFX4Gy2/H0X04OQPQmh6vFg1PbVerF+rOHOdXNqQQQgghhBDi9+XYanrFJXfDju+qNrsCWM3GYbWeQCzQlYKCIMHNK2p1yPul0V+mWVUkq742W2I2EKgatWZZUFJCnZknHK7MPNGqdd1APU+8f1dTVSaKZTWuVdMgszfR7r2J5d6NufEFzDVTMMp/QrcK8Sy/A/eq+4i3vRS6Xgu+xvuluYUQYlek2CaEEEKIP5Wdw1skogJeKAQVFQaxGODYGDtmY2x8Cba8DlZh7QN5G0POAKLpR1BiHkospStRJ5VIRB3fcZLLBWA7UF4M+flqeyymtkejKoBalhpd53ZruALpWO504v4OhL1q3/R0tQh5JGwTL1mFWf49Zul83KVf4y6bq0bH2SHY9rF6LLgOMrphNh6J3XA0dlqPqouppo5NQgghhBBCiIOB48CWj+CHm6FoQdV2Tw527tVUNJsAZgYAkVAi9+iUlqrRYq7KvwrbNpSXV41S23mK+uqjz6BqushamafyOL+cedS5EyPbbFvtkyioVS8G7jwKzjRrz86h64ArFav1BKxWl2IUfIJ71b248j9Ei5fjWvEfWDUJ2l8EXW4FX6P99hEIIUR1UmwTQgghxB9SzQW2a64TkGBZKhDGYpXBL7wGz0/P4i/9H0Z4fY3jObqHeNYgaHoCsZxhhM0O2I5GLKaOrcXB5ajgqOuqN6dhqGOXlamFwEGFUb9fBdDEFCuapp77/Wr/WKxqxBtUBVXb0VURzuxAxH867pbgMSpwl8zGXfwZ/pKPMUoqe7MWL8ZVvBjXz3cRT+1CrPk5WM3OwvE1S96TLBYuhBBCCCHEQajgG1h4M2z/PLnJ8bXA6XQDevsLsOJ+qFyqLZF5LEvlisTos7Q09Xo4XJlnKotmiZFniTXZ1NrW4POpzGSaVYW6oqKq/y4vVw/4lZnHrrruSKTuUXDVi22JkXeJE8dzhhDKGYJe/B3uFXdjbn0T7AgsnwKrn4G8a6DT9eBO3y8fhRBCJBz0xbb333+fd955hyVLllBaWkqrVq0YN24cY8aMQdtNd23HcXjiiSd46aWX2LFjB506deLmm2+mR48e9XfxQgghhPhNVJ8mMiExx38ivCWnQNFiBIreocnWyRwS/Ry2V73HNgJEG56M3fxU4tmDsZwUystBj4JebW03jwdSU1VxzbJUIEz8dzisCm1lZWq716sCqWFUXavPV9XDMyESUftCze3hsAqxuq5ed4wUIpnHqYf7X2S4N+JsfAd981vo+Z+hOTGMsiUYP92E+6eJxLOHYLW6GFfrkei6VNuEEEIIIYQ4aJSvgQXXw4ZpyU22pxHR3L9jtbwQdDdep47Ms9MUkY5T1RlQ12vOeGFZqjim61Vrpe2ceUIhta/bXZV5Emtga5rad39mnupCoap9E50qvd7a+c/O6ANHToOKJbDkLlj3CsQq1H+veBi63AK5l4MhC7oJIfaPg77Y9uyzz9KsWTMmTpxIgwYNmDNnDn/729/YunUrl19++S7f98QTTzBp0iSuv/568vLyePHFFzn//PN5++23adGiRT3egRBCCCH2p52niawusU4AQCy4g5Q1D9Fw86O4rM3JfRxcVGScQEX2mdhNTsSf5k9Ob1JeokKky6UCZKL3ZSSigmSiB2g4rMKkrqven4ZRtU6BpqmwGgio9ybCbeK91YOwbaspJBOFu2hUheJEL9BwWP2sPkKtONocT4sJ0GICWMWYm1/Hvel59MKv0HBwFczEVTATljaDDpdAu4tqTKWyqxGBQgghhBBCiN9JLAhL74Gf/g1xFXYcVxrR9jcRbXMVuFKSu1bPPInv9VWj1Ixk8cyy1H5eb1WeSEwFubvM43JV5a2dM09i9FriHPs788RiVWtuJ0a3JTpVpqSo9yemtkzmmIwuMOBl6HwTLLwFtrwP0R2w4Hrs5Y8Q7/5fjJYj0A2ZY18I8esc9MW2Rx55hMzMzOTz/v37U1xczDPPPMOECRPQ6/jrUCQS4bHHHuP888/nvPPOA6B3794MGzaMp556ittvv72erl4IIYQQ+1timshdFo1Cm/Asv5+UtY+h2xXJ94X05iyJjMaVdxW6vy2aBg2rTVkSDEJpqQpz8XhVCNS0qtFq8XjV+gWJXpiapvYrL1e9MG1bbS8tVdeXmammcEkEXMdRD6g6hs+n9jdNFUITYdmp7LVqGGq/aHSnqSHNDKxWF2G1uogUexX6+qmw6mkIrofQJlj0N/jxHzgtTsfqcBNhb9fkMapP1VI9gAshhBBCCCHqieOoUWzfX6u+wwNoLmLtLifU7lZsV5bKPFbdHeXCYTW9fWIqyOJinfR0lS9sW2WVlJS9yzyhkNqeyFk7Z55IRG13u/dv5kkU8nS96r3V7zMlpeb0kjuz03tgHT6D2OYvcC+diFnyDXrFKvSvTyK2chjx3g9gZubtl49NCPHndNAX26oX2hI6derEa6+9RjAYJJDoQlHN999/T3l5Occff3xym9vt5thjj2XmzJm/6fUKIYQQ4reVKLLtPLrNKl5L+oa78W59Ds2JJreX+oewwX85Wzia/MJNtDcaEzBVyAuFqgJdRUVVSA0GqwLijh2wdSsUFKjHpk2wZYtaB6GiAsrKHIJBh3gc4nEN2waXS8PjUWEwJQUaNlSP7GzIyYHcXGjbFlq2VOeKRtV5IxEVejWtqten16umc0nY1Szalrcdnm63qUXBN7+r1izY+jHYFtq6qbjXTcXOGkGk5c1UpB9eo8AWDqvAKyPchBBCCCGEqCcVG+DbS2Hze1XbGg+B3g9iuTtjhSBcUfMtie/tienzi4qqRntVVKifXq/6ae5F5ikoqMo8W7aox/btagRcRQWUlTpUVGYe21aZxzRrZp5GjVTmycpS/92hA7RrB82b71nmSRwL6s48lrXrYlsiH9o2VHgGQo85+La/TPrqG9Ejm3Dlf4DzYVec3KvQuv8dzLT98xkKIf5UDvpiW13mz59Po0aN6iy0AaxevRqAtm3b1tjerl07nnvuOcLhMN6dJwQWQgghxEGjeqFNj27Hv/ZuAlseQa8ssjlolKWPYUvmRCo8vbEs8FpB7Hwbl0sFzcQUJdWPWVYG334LixfDsmWwerUKmgmpqdCkiSqatW4N2Q1CpHm243NbxOMOuu7g8RiEnEZsLwpQUaHCY1kZbNwICxdCfn7VAt8ejyq8de4MHTtC+/bQqZN6rfpUL4lQXX37zpK9P3UDmo+E5iOxi34itnQy5oZn0Oww3sJ38Ra+SyT9KMpa30Gs6aDKwKzeHwhIwU0IIYQQQojflGPDikdh4USIlaltKa2h1/3QfJSqNIVqdy6Mxaq2aVpVRkh8n3e7weezMQyVGTSt7sxTXAzz5qnMs3y5yjzbq61rnZYGjRurToJt2qjM08C7HbfbImY5mKaDyzQI2o3YvqNm5lm3DubPV8dLTE/p9aqM07kz5OWpzJNXOcCseuYJhapG7tWVeXYe7ZZQfZmBxCwoaBqhRmcSzjqJjC3/h3f1f1SHzGX34ax/Ba3vw9D8pF/+rIQQopo/XLHtu+++Y8aMGdx000273Ke0tBS3241np+4OaWlpOI5DSUnJPhfbHMchmFhh9AAQqlyxNPFT/LakveuXtHf9kvauX9Le+y4UUg8tVkrG1slkbJmEbpcD4GBQmnUm27OvpVzPVVOglAaJxcCyQsRiOoWFIWwb/H41jcmSJTpffGHw9dc6y5fr2LZGSopD+/Y2/frZtGpl07q1TZs2Djk5VesK+DxRfKH5RIIW8Tj4U0BD1bqi1lo2hXtTHnTj8VStbxCNqqlZNE1j82aN9et1fvxR59tvdV5/XcO2NVJTHXr0iNO7t02/fnFatHCSU6wkpnCpqyCWWB+hugitiLa/F73FDbjXPkxgy+MY8VI8JbPw/HA05asHU9HydiKB3oTDql3315SS8jtev6S969eB2t5+v3+/HEcyz5+btHf9kvauX9Le9UvauzatbBnuhZdjFM4BwEEn1v4KrI63gsuvvpBTlXkSbFuNDqsuMSosMe1jRUWIeNygtDRELKZGm/n9akaOH35QmeebbwxWr67KHe3b2wwYoPJOixY2zZs7NGlSNYVk9cyj61WjzywLIr+QeRxHY9MmjXXrdJYs0fnyS50XX1RBJiPDoWfPqszTpIlDNKoyT3p63ZmnrrwD6j2JzozhcFWRT7WRTlHqLaR0H0v2+omkFL2LFtoEs0YSazqKaPd7wdtknz9P+R2vX9Le9etAbe/9lXn2heY4u6r7H3y2bt3KqaeeSrt27Xj66afrXK8N1DpvDz/8MIsXL66x/YMPPuCqq65i1qxZNGrUaK/Pv3jxYqLR6C/vKIQQQoj9xnE0YjEdy1JziTi2Q07Z27Qtm4TH2ZHcb4M+jJW+y3BSWmPGS4mEoli2h1C8AdsKdCIRcLs1TFPjxx99zJsXYNGiAMGgQVpajK5dK2jfPkTDhlGysiK4XA5uN+i6g9er4XLZ+Hw2fn8cXYdUVymxouXg6NiOhsuI4/E4KnhGTIrtXNZszcTj0UhJsSunSVFfy5o2Bbc7jONohEIa0ahBYaGLNWs8LFuWwvLlflat8hGPazRuHOHQQ8sZOLCE3NxyDMPB43EwjJpf8fx+B02ruS0a1YlGNeJxDcvScaJltIm9Spvw87id4uR+W83BrEubQMTXNnksqJoWU9fBMGofXwhxYOndu/evPoZkHiGEEOI34Ng0KppK04JH0B01/Cro6cC6xn8j6O1cO/M4GrGYkywixWI60ajabpoQ8IHbKcUKR4jEvQRjNTOPYWgsWuRn3rwAP/4YIBzWycy06NKlKvM0aBDFMKoyj2ka6HqMtDQbr9cmFoOclBJixSrz6LqG16uuPRrV9inzFBSYrFqlMs+yZX7WrvVi2xrNmkU47LAyDjuslM6dyytnDKmZeerKO+paamYeyyL5vlBIq5xOU1Xpmtqfk1d2N564GsoX0wOsz7qKbSknoxu6ZB4hDgL7I/Psqz/MyLbS0lIuuugiMjIymDx58i4LbaBGsEWjUSKRSI3RbaWlpWiaRnp6+j5fh2matG/ffp/fv7+FQiHWrl1L69at8fl8v/fl/OFJe9cvae/6Je1dv6S994xlQbA8ihMqRLPDuILLSF17N97g/OQ+4bQBFDW5gXBgIC1iZWilywlWWJTY4CVM47QgDVJzmf5ROp9/Dj/9lEo4rNGhQ5wxY+IMGWLRsaNNLGYSDpuUlanzqhFoamrFQED1JPV6VU9Ljwd8sTVYDZpgOxCPqYKUXZnLinaAFgtQYTdLjhRzuVRvT7dbLSDeoIHqgRmNqvM1bAjNmkH//mrfSCTEggU6ixa5mDUrk7ffziInx2bo0Dinnhqjb18n2dvT61XHtqyqXqimqa45XBHFFS+EeJiw1YgId7AidjNZ+VPIKZyEYZfR2PqURoWfUdHobIpa3o7ma1znGm57M+pNfsfrl7R3/fqjt7dknj83ae/6Je1dv6S965e0t6IFN+L+/iKMglkAOLobK+9m6HANrXSzVuZxdC8V8SzVwc+tvsdHYl4qrCxCUTep7sKqzBODFDNCk9QgfrMNr7zlZcmSLH74wY1laXTuHGfs2BhDhsTp0MHBstyEw+46M49pqlFigYDKPKYJHmsNTmYTHEftZxgQjqj72tfM07w5HHEEuFwOoVCI+fMNFi40+OijLN54I5vGjW1OOEFlnkMOUZkncfzE+t27zzxeImQRc9yVa8tVrfXm9XYgP3o6aWtuJ3Xr47jsctrm/5Pm1peUdH4U29dKMs8BTNq7fkl71/aHKLaFw2HGjx9PWVkZr776KqmpqbvdP7FW25o1a+jYsWNy++rVq2natOmvWq9N07Tfdajirvh8vgPyuv6opL3rl7R3/ZL2rl/S3rtm22CVFxDbvgwnVEDmjkcJlH6QfD3maU2oxWWE/X2wo+CtWIphFxPV/Rgug0AKrNvk4elXm/LOzEYUFrlp2DDCqFEWw4e7adrUQNeN5DplKSkqQNq2WvcgsaB4IACJ75Ver1rDQNfBE0/HHcsHqhYeTyxObhjgcacTiPmTi5EnimEpKeo4Pl9VYDUMtfB4YroUw1BBdcAAGDJEXcOKFTBzps677+pMnWrStSucdx6cfbaaHiYcVu9JBNBIBIxYAd7gMmJRi1gMtDh49a3EUvIobnEXdvtrSNt4DymbJqPZYQLbXsBf8CbFzf5KuNXVmCneWkHT6927dd3kd7x+SXvXrz9qe0vmESDtXd+kveuXtHf9+lO399pX4NtLwCpRzzN7o/V/AXd6J9yoKQ9DxQXEti3DiVu4XCpbZJvriQVD2CE/bjc4UYiFt+JPa0u8dD2abiQzz8q1Pt7+qCnvfNSY0nKTli1tzjxTY9gwaNiwZubx+3edeVwutZ6b318z8ziOyjw+n8ocjrP/Mo/bDQMHwrBh6j0//QQffqjzv//pPP20Se/ecP75cOaZ6jr3NvPEzezkvSfWt9M8fkpzH6U8+1xyVl+EGVyCu3gW2fMOJdzlAWIt/oLXq0nmOYBJe9cvae8qB32xLRaLcfXVV7N69WpefPHFPZr+sVevXgQCAd5///1ksc2yLD766COOOuqo3/qShRBCCLEflBWHKV73M+7C98kpfgiXrQKqracQzDiB/NTzMDQ/TlCFQp+nGH98FbY3j8/nNObVt5vw5bfZpPgsRhy9juNPNCmoiNGqVVOystzJnpGxmAp5oEKmx6N6RybWdXO5VDjLyiIZIgFiRjYuYx2mURWKIxFVdEtvYBK2skmpXKzccdRxU1LUfyfWG9D1qrUWHEedKxpVr2lqBhmiUbV/nz7QowdceaVa0Py99+Dmm+Gvf4VTToFLLlGLjicWB7djYSLbl2FFrMqpVNR2BwusZfiaBHClZBHs8A8qsk8jbeM9ePPfQI+Xk7n+ZmLbH6e03b3YrU5GN7Tk52JZVT1DhRBCCCGEEHWIFsN3l8PaF9VzTYfON0O320BXvdksC4oKwoQ2LyMSsnBQxSCfTyclvgTbihEy84i63cTjULTDIj26CF3XiMTcvP9ZDq9Pb8zcBVlkpIUZNWQFRwyySMnpQHq6n5QU9irzmKYa0ebz1Z15fD61PrWu/zaZJzNTzfLRty9cdx3MmQPTp8MVV8ANN8DYsSrztG27d5nH6wY9WkCkIoLu8uC4s4nFvJDWn/w+35O67i4C6+9Gi5Xh++ECYlvfxOrzBJ70xvXyqyKEOHgc9MW2O+64g88++4yJEydSXl7OwoULk6917twZt9vNueeey+bNm5k5cyYAHo+H8ePHM3nyZDIzM8nNzeXll1+muLiYCy644He6EyGEEELsqVgMIlsXkrPxOvyhecntOzzDKG5wNnYwH69WgRX3Ewqp0GZbFq+834En3jyU5WvS6dp+G3dd9jHH9FuGacRwZbbkx81tSaxmG4up0AcqWDoOpKaqoJfstOXY+LTtpGpr8cQ2Ydo7sDYVo1lFaHYQg3K06A4MLY6jm5j48WoppHra4sS2o8ebEtabETUa43K5cLnUVCoZGSp0xmJVvUMNQ51f09S2SARyMsP4jQLcdgQ94iGmZaNpXo44Ao4/Xl3iSy/BI4/Aiy/CoYeqnp/HHw+EC6got4hZ4DIrg7Gmjq9pFnqsACJe7JJlWGGLggaXYfqG0CD/YTyhRbjCa8hcMobolmOIHvIwTiBXNYksYSCEEEIIIcSu7ZgPX54KFWvU85TW0P8FaHhEchfbVsWueLCAuGURj1dlk7heTmmpmqvRm1mCFcuhpLSySBWK8Mb7zXjitU6s3+SnT5fN3Hvt+xzddyXYIULuxlR4MwnHVaDZo8yDKoztPAJMTR3pxZOThze6DF231Gg2D2iGiSs7j6JtXvRgVXHO5WK/ZB7D8DJ4MIwcqd7/3HPw+OPw1FNw1FFwwQVw9NFgVxRQXmphO+A21fG1apnHa6/GKSgiaqlcBKC51mGk5qF5skF3U9bmH8QbjyDtx3HoFctxbXsXY2ZX6PcotDzlN/olEUIcjA76Ytvs2bMB+L//+79ar33yySc0b94c27aJx+M1XrvoootwHIenn36aHTt20KlTJ5566ilatGhRL9cthBBCiD1XY+59zSb+8yNk/3wjuh0EIKI3ZWPqdZSbvfDEi3Fi+RjRKEEbIpbO69Ob8Pz/DmXzNh9DDt/AP6+YSe+OG4lEVFCMRsGK6RjBFZiZramo8JOWRjIsxuPgZwNpJfPRyxZjlC3CG/4RV3gNmhOpca3u3dyHASRmXUwFEise2ZhE3O2xfJ3R9E7oru7EMw5DN5vj82kEgyrgJtZMcLshzVNAvEhNhxKs7Bnqcq/DTMvD0rLRdRVeL75YFdhmzIAnnoDx41Vvz/HnuhnYU8N0VVtU3Kfu2XFAd0LYJeuwE+kbsLx55Ld4gLTIl6RsfRIjsgH3jk8wv+hOtMMtRNvdhOaWYW1CCCGEEELU4jiw8lGYfzXYUbWt9TjoMxnc6TUyT2IKRB2VNRJfyR0H4rEoVP6Z06rMPBUVBq+/25SX3mpOQZGb4wdt46Gb36FL261EIuAAoaDKPUSXY6blUFHhrZV53G710HVV7PL7q6bUT6yNlpgKMrFOm2lmozsBiBTgsiLEYh5sO5uYpY7vOOpebFsdx+dTxbbEbBi6rrbtKvNYhcuIRiyimtrP41mHO5BH2MnGttVxrrlGzfDxxhvw2GNw7rmQlwcT/uKif5fKjGNXTU0JoBs6WskS4q4cbLvaxxSz0MuWoXsDOKilhqy0flQctQDPzzfjXjMJLVoIX50Kbc6BPlPA3P2SRkKIP4eDvtj26aef/uI+L7zwQq1tmqYxfvx4xo8f/1tclhBCCCH2g0SPzmBlb0iXtQn/ovPxF34EgINOvu90tvrPJe54sCKAyw0RIOLhpfea8sRLrdhR5OaEY7bzzKnv0Kd7GdFQOcGQ6gVpGOBN8VAUSwF7G2lmIcWRdLzRZTTRPiGt8Cu85bNxWxv27KI1F7gbgCsFNENNCYMGdgTHKoNYOVoiXFfSsfBFf8IX/QlKgHVqe9zdBF/aYfj9gyh0H0fMnYema6SmhNF2LCNuW4RCVeE4HrIwrGV4mwUIh7243SrYahoMGgTHHAM//ggPPAA33daQpo1SOe/U9Zw8bCsul0M0qgK0ZYHHqcCJW2rNBAMMPTHtikbQPIpIz7GYG18gfdP/odkRPMtuw7XxJbRDH4PGA/f58955QfO9WQtBCCGEEEKIA5JVBvPGw7qX1XPDD30fgbbnqMxTXpV5DAPKy6G0FNJMD3Zl3zjHUcUyl+ZO1uqsoJdn3m7O06+0oiJocPIJ27j87B9p37IYLbQ1mXm8Xoh7PQRLPbhdFgF3AQUVzXEcNT1jIk/Ytnq4XGo7qNfc7prfzWtPG+8Ff3N0wLTACgKWel9qqiqSJQp5iSkpKyqqppI0TbUOXEVF1eiz1JQwdsEy4pZFNKrOGbMgZlm4rGV4cwLEYt7ktJWaBieeCCNGwKxZanaPqyY2pnXzVM4/fT3Dh2wnGnVwuytHtsXLVZGtsrhXM/NYxKMFxM3mxGKVa7n5/NidHyTWeCS+H85DC26ANc9Dwdcw4BXI7LVHvwqSeYT44zroi21CCCGE+GOyLBU4KyrUc3PLa6SuvAQjXgRA2NOV7VnXUBJrm5yTP2pBKBJg7rzuTHn5MDZu9XH80duZcM4amjYKk5HZkLiho+vluAwV+kyvBzulA+EdIdqmL6RZeAbp0W9I2bamzutydA9OWhe0jG5oaR0gpZWa+iWlBXiyVXDWtDrfq6FCVUVZiFDRVmKlm3DHNmFG1uAK/oQZ+gmj4if0eDkARnQLvoI38fEmOYBlNieYPpRoxhGU0xRdd+P3g+kGHHVsQ7eIlRdge5sn11eIx1WAi0SgUyd46CH4eWmEhydV8K+HcnnmtVZces4ahg/epgqQbpNo3IOJen84rIJnvNp6C1ZEp6jxPwg3PpMGK8bjKZmFUbEMPh1EvNV5RLv8B92Xvcfh0bKq1lZISBT/TLPu9wghhBBCCHHAK/4RvjoFSpep52kd4Yj/QUaXWpknMaJN09R37pJwNh5tHZpmEY6AFQWHAHrMx3tfduCR1w+nYIeHUcO2cOEZ62jSxCatSWf04Bw0HVyV0zIabg96g5a4gjtITwfHiGCaVVM6Jop8idkxUlLU830pBJlm5TmNqvtKrHMNqsAWjVbtmxi15/Wqe09ch9cpoNyy8Hgqi1KVmSduQyxi4bMLiGjNk1NTJqbatG21nvVTT8EP30d4eHKEv9/XiadebcXl563m+MEFuAxI8cSJkY6bujMPVoTyiDq336+uORqFjEaDcYYtxp53CcbGV6BsBc5Hh6H1+DfkXbXLLJj4fCXzCPHHJcU2IYQQQhxwbFuFEMsCzSombcUVpGyfCoCDRknT61nhuxO/qwy7aBlej1rH4LuF6TzwdAdWrAkwqH8hD/5jCe1aqYRnuEyi3jyc1HIMdwqeaBQ3Bq7wKrwFD9Ci/AsMsxxqzgpJPCWXeOYRxDOPQM85DE92BzR9379C6ToE0n34U9sQDLYhFIKoBo4JQQuiERt/fDme8m/Qd3yDXjgbs+JHAExrI+kFT0HBU2TpfiKp/QmmDmKHdhhW3IXprlw/wYpg6ZXFN6Nq4fNotGrKl9ZtPdx3bxnLFixg8lMt+Pu9nXjhjRZcecE6BgxuRCwYJlXbRopbx+cuJxKK4vK4cQgQidhoHg+aC2K+jpT0+ZxA/nN4f7oe3SrEWPcsni0ziHR/hIomo38xPCY+77qEw1WBWwghhBBCiIPK+v/B1+dCXE1/T6szod9jYAZqZB5Q34kjlVkksRpOMOxFc+cRK1uG27TAgVlfZ/Dw1LNZsz6FoQO3ceX5a2neJIThMiEtjx3hbPxZfXEFU/BFo9i6mzgB7GAQryeGzw+uDA8xL2RlqUJS9aKaaariz6+h62qNN79fFRMTI892Lq4lRnZFo+q/09PCGNECdCLoVgH4o5geN3EbghVgxdQ603EgGo5g+2pnnooKdS7bhrzOHqZMLmPRNwuZ9FRLbrirK8//r5Rrxq/jqCNzCBbnk25QZ+aJWh4su6otXC41ui4cBstIR+/xEq6sY/H+eAVaPAjfXwNbP4bDngFvTq02kcwjxB+fFNuEEEIIccBJBDC9aC45i07HFVHzKkbNlqxt8jxlvoFgw7YSDxCgbEcRjz4R4INPUuncyWbyZOjdM4UMbxN0LUI05iHoZJPq9uJ4Auil82hQOg0j/2OMWGGNc8f0NCrShqI1PR692TAcb5Pka243sJ8CUPUAmiiAOQ6Ypo6udyTWoCO0OE+9VvQj7q2v4i6bi1k6Fz1Wim4H8ZV8gq/kEzKMBpQHjqU0cDxBozWa10Ncg7IyFQrd7qreqaWlaioZlwsqItk07RTgnrsLWL58I/c/lMMVt3ahRw+4+aYIh3dYgVW4BCcWwaUBETA0D/7UjlS4s3Eqp7SJxTWCjc+jNDCCjLXX4938HHp0O77vxmA1G0u462SMBlm1wqPjaEQiKlzHYrvuOWtZdU1VI4QQQgghxAHKsWHRbbDkLvVcd0PvSdD+4uTIp+pFtkSRKFI5kipReItEoDiUjRMPUFpQzJRHU5k1J4VePePcdXeEbu0tTCMbDA9l0Wx0vKSmAt7GONFN+HwWFRUQj6pFyTQcPF6TqJlNg53WTkvYzcCsvbbrzFP1vT+xFpwdLECrWIaGhaGDHQ+Srq3C9LckpqUTr8wwUauySOfx4Oi1M4+mqbasnnna9Ajw4H0F/LAozAOPZHP+Nd0YcHicWy8Pk5FWhFW4ombmMVIw/O0wK68X1PF0XWUXtxs8Ho1Yy/MJNuiP9/szMEoXweb34P1D4PCXoZGaWl8yjxB/HlJsE0IIIcQBx447mKsfJLD0RjRHpdD8wDjWZE2mqDwdV0TN6e9ywRNPeHn99SakpMAdd8DQobrqGenyEvc0J+aA44I0d4ys8NukrXsYd+Wab8nz6SmEAgNY5xpOtNG5ZGalq+lVdgpBv8XUHrpeFao0rWpKlQS3EQajhHjOMVhNjkEz47hKF+FsfBO9ZCFarAwjXkR6yWukl7xGxNuZrbHrKfadhT/gpqysKtD5/ZCernpOhsNqGs2Y6SViNKdlR7jnXli0CKZMgbFnuTlndBuuPXMF6QHwVC6UjhYDLaR6lDoqMLrdal0Jlyubsi7PYrcYi/eHC9HDGzE3vYxR8Cnxno+itx2VvC81ZY5GNKruOxbb9RQqiYArhBBCCCHEAc8qhTlnw6bp6rmvCRw5DbIPq7GbbVfubkFxsRr9lSi8lZaqwpHXq1577jkvb7/dmOxs+L//g/79DTTNwPE1x66cQjGtcoSa2w2G20tqszxcwWXYtpUs4Hn8HszsXGzHi99fd3Fnl5nHccAqhor16hHarJ5HS9TPeKjyi3tlhcrlA1cquALo7nQ83ibgb4ZmNCNqNAOqTu42whBbRly3MCoLZ44TwLFdEFqP48nD7XFjVWaluMskTDbhoNq3euZJS1Ond7trZ568HvDYE/D55/DwwwYnnduLi075gQmnLSM1RWUew2Vgexuih9biCWRh2d6dMk/NfGKndiJ4xFw8S2/AvXYKhLbAp8fAIXdjNb1MMo8QfyJSbBNCCCHEgSVahHvu+Rhb3gIgrqWwOvtxtnjOpKxY7aLr8NVX8MADsHkznH46XHYZZGSooJmaqsKk3w8BXwW+TU/gX3k/RnhD1Xk0A7vhEKI5JxHJPI5yJ5utK9bRPsskEKjd2zAxzclvKTGFSnV6rAAcC91MXIMB2T2xM7oRKfwZu2ITxo45uEvnoDkxPOGltNpyPk1dt7K9wRWUZF+MlqJWNy8vh4YNVQBNLMidWADdslSv06MHhjn60AKmTYvzwGPNeefj87jp4h8YN2o5ps9NxE4nFHSjmwXYevNkKLTtaouvNxxKxaAf8Sy9Dvf6p9Aj29C/ORm2nAl9JmObmTWmUKnernVNobI/e9cKIYQQQgjxmyldAbNGQulP6nnWoarQ5m9a9+6lUFCgvgPbtvpOXlamXguFYPZs+O9/VcHtvPPg4ovVd/bEqDi3W2Ufv79yOnlHva7WOcsGfwCfrwAjGMGJQDzaGJc/i1Rf1fps1SUzT6wCCr+Foh+g5EcoXgwlSyFW9qubyAO40XFS2mIHOmIHOuH4W2AbDdC9zfD6tMqcYhMJdEArX4EWK8Fl5GB4IeaYBPU8YnFvcv03x6nKDMXFqsCWyDrVM0/iv08YFmbokQW89BI8+lw3pn2cx60T5jP6+C3o/nQiETdWxEJ37zrz1GB4iXSbDI2H4J5/LlglsPAmPBu/xHDfAEjmEeLPQIptQgghhDhg2PnfwuzTMIJrAQh5u7Gi4esU23nJaTe2b4dp0+CDD6BLFzUKq2fPqp6ful45/UpsBw23TcG/cRK6VW2qSF9TaHcRtL8Q3d8ctw2aBfGKICkpNpmZNac5SawtUB/z5yemUKkxl39cLdzgdte8Bt3lwpXdnXDGoYSaXogWK8cs+BDvpicxwyswY5tpln8zTQrupCTnQnY0vgnTbEowqKaLCQTU+gmxmAryug6pZgHhgmVYYYvzh29iZJ8K/u/Zgdz0775MfSePu25aTpfccmJxcEUjVFQuHu5UjnBLrJUAgJlO5JAniTU5Be8PF6GHN8K6l2D7F8T6PA/uqp69OxcZd55CRRYLF0IIIYQQB7xtn8Gs0WqUF0Db86DvI2DUrMzYtvoeXlqqso1tq8xhWVVTDW7eDK+9pkZg9emjRrN17qxyiterfkYi6ntyoqOgy1XHiCnDi5nWHCMA0ZIguquUQEDNdgHVMk+sFHPHJ+jbP4OCOVC0EJz4L9+zboKZAe6MyvvUQasMLfEQWGWqQGeVAVVDtzRstIqV6BUrYdu7ye2OKxUtrSM06IGe2RvT1x4rrQua5kNzMtF0D7qRjTvuxapQ7QhVhSqPRxUdIxF1j4k8F4upe43FqjJPLGxxxWmbGHN4hH8+OYjL7ziC598u4q4bl9O2VWjPMs9OnGYjoeH38OUpULQAb8G79DIWEmz+Gq6c/pJ5hPiDk2KbEEIIIX53tg3Rn57Cs2gCmqMSSEH6BazKmITu9uPXVEHoyy/hqadUeLr6ahg1SoWSSET1XtQ0cFNMg23/IbB5Enq8vOokWf2g0w3QfKQKhZUS0zjG4+By2ckenr/XfPmmqQJcIvjqtgdXvO5in8uw8QaaEI42x3bATj+EipbXo215j8DG+0kp/xzdCdJg+yTSCx6nOHs8hY1uotxsgt9f1bvTNMHjCuOULCMetVQYjbtpkJbPfde+z+lDl/K3h49l9IW9ueCM9Vx6zjpMr4eSMlUYTEtT16xpqh2rX2u84TAqBv1IYNm1aGuehtAm3F8eQ6DlVWjOWKB2kbH6FCr1MaJQCCGEEEKIX2X1czD3QnBioBnQ637IvSJZBUqMWotEVIEoGCS5jlciy/j9avtHH8Hzz6u33nwzDBumvrdXzzyJzODzqdzySx0EE/nGNO3KUW9A6XI8G6bBlvchf4669lo0CLSFjK6Q3gUC7SGlJfhbgL8ZGP49G5JlxyC8DYKbILQJylfjlPyMU/ITWulSNKtInS1WBju+VY9VT+BypWI06EWsyRjCmePAnYHXBC1SVTxzHNV2brc6VThctS6c36/+OxJRl+lz1848jbPyeeSv7/D5/Hbc/ugQRpzXl8vOXctfTt9AzNqzzJNgmoCnLRw7m9jcK3CtewpffCPe7wYT7vYw8SZ/kcwjxB+YFNuEEEII8buxbQiWR9EWXEPKpocBiGt+VmQ8Sn5gHNiqE2Q0CvffDzNnQq9ecMkl0KqV6sWpaSqoGITI2j6FlLX/Qo8VVZ2k8RDofDM0OvqgmZujRrHPzIbIOqhcu64GzcSVkk26r/poOJ3SjBMpCZxIqvU96Vv+g2/7q+h2mMztD5KR/xhljS8l1OYWHCM7eS6XVUB52ELT1SjBmJGOz7sVOx6nb+d1vP/cl0x5IY8pz7Tmwy8act11Oj16q8CZWOg7EKh7ShRvajpa/6eg+Ykw70KIFJKy/kF6mh8Qbv4i+HtjmurjCQarpsBJFASFEEIIIYQ4IDkOLL4NfrxTPXelwhGvQ9OhyV0iETU1ZCymfgaDVdNGJh4VFeq1e+5RU0cOGAAXXKAyjyqSVXbE01WBLTG6KjV174o07uhGXMvehS1vQvEPdeyQCTkDIPtwyDkcMnuDK+VXNhKgu1Rxzt8suUmrfOA4UPozrHtNTVlZ8iOULgdsiJWh5X+Bmf8FWdp1xLOPIdZkNLHM0UAWbndV+ySKmY6j8kRinbREu/1S5hnYaxUzXzC596nOTHq6De9/1pBrrzfp2HkPM0/1gpnLR7zPk1T4+xD46WoMO4zvh/MximajdZxCMOKVzCPEH5D8UxZCCCHE7yISgdL87QQWnIKv7EsAoq4WrGn0FEWuIwmWq96JX3+tpoosKYHLL4djjqkcCVc5xUqKP05q/jM023E7ruim5PHtxiegH3I7ZPX9xWux7UTPUp1I5ADrWWh4IS0PSpfVLLhpptpueDGNqtFwhqHuxe0GR+/FjvSXieX8jczN/yC16DV0J0z6lv+Suv1pdjS9lUijK9B1D35PBFLBioJugGG40VwtMUPrseNxXO4IV1+0nhHHFXP9nd248hqTk09WIwwDARX6HUf9TEzdEo9X9b4FoMUoyOqH881f0LZ+RMBaRsq3RxDpfC/BZhMIRzTV47TyPaFQ3YuHCyGEEEII8buLR+Cb89VU6QD+5jDwPWjQPblLKATbtlVOQxgPEy8rgFAEr+4haGcTi3kJh2HePHjwQfV9/oYbVLEtUYxJTGGoaWpqRL9fHXuPM0s8DBum4V72GN0KZ+30oqbWlWt6PDQZpoprurFfmmePaRqkd4Lcy6oyj1UOxQthxwIonAehjWiOhSv/A1z5H+DRL8eXNZKKRudjpRyLbRtE1Oz7ycJaIoNEIlXr0/1S5vH6w/z1qtWMHLaD6/7RlUsmuBg7FiZMUJlkjzJPJdOE4qbnsLIwg0PKbsEVWoN7/VNQtJhI12n4MptJ5hHiD0aKbUIIIYSod5EIlK6dT4PFJ+OKbgCgzOzDKt/fiJaaeN3zCTt5PPRQNtOmQV4e3Hkn5OSosJkII56yObTbfAW+0PfJY9tZA+CQf6E3PnKPrsWyVM/EaLRqnYSKigMs8HizwQxApECFesMDnuwa6z9UHw1nGFBYuUxdLAZRX2e2tnuFivitZGy8A1/+/9DjJWRvuIG0bQ9T1u4eoqmH4fOCu/KeHQcidjrulDy0eAmOrxme1CbkNszmyadNXn/VYtIUg3lz40y+t4jDB6YRx0tZmQqciWtJTJOTkaHa1DKaYh/2PvGl9+Bffhu6Hcb74+Vom98l2vF53Gk5v7h4uBBCCCGEEL+rSCHMOhnyVadBGvSEge+Cv2nVLhFVaItGwacXENq+jNIiC0NX35e97nVEtDwmT85mxgy1DvU116jpCm1b/dR19X0+EIDMTPXT7d7DNaVLV8CKh2HN8xDdkfwjsINGPPNIYk1Pw2gzBjO18W/SRHtt58yT2QM6XQ+6B4q+hw3TYMMbULoMzY7iz38df/7rxN3NKGt4HtHMS4m5m+H1qpFivsrZP+KVS8+lpoIR8exR5uneMJvnp7p44XmLxx538c0ci4f+W0SPvul7lnks9RkaWhQz0JTyti8SWPl3XAUf4y6bR8P5vQn3fYN45gBAMo8QfxRSbBNCCCFEvbJtiKx4newfz0Gz1dyHO1JPZ61xERHLwIrCuo0ubr3Xy+r1DmefFeMvZ2zD74lg6x50bzYuu4iWO24ip/yF5HGd9C5oPf4PvenwPZ4u0rarT79Y0wEXeAyv6i27BzweyMoiGQLdbhU4Hb0roUavEy/9GveP1+Iu/QZ3dA1ZP51GJG0ARdnjCWkt1B8AbNCBcNSN5mqKpXXDFfXiONDAV8AFo5YxtK/Bjf/syJizcrj0vE3ceJOX0mg2qam1r6mgQAVclwu06A5Cvn6sT72F3OizuCLr8Oz4gIbzuxPu/SrxrKMA0OwweqyAuBVB99YuMAohhBBCCFHvytfCZ0OhbLl63uxEOPwlVSiqZNvqu7htg6mH0cqXEbPULBVRS42sWrbKzd/u87Nlu8P4i2KcNWYbHjOCrXlwpWRjo757u1xqNFsgsIfTRhZ8A0v/DRvfAqoWBot5W7PBPZxAt6vxZrYHwAIM+yDIPJm91eOQf0LRD7D6GVg7FSKFGNFNZGz8J+mb7iGUfRoVLa7GaNgXXVfFtJQUVfzSdYib2ejmOuK29YuZJztQwJVnLuOEw0xuuLMTI8bkcO2lG7jiqhRKQnuSeQpw8n/A2rEWK9CMUJubMd0t8G5+Bj26Dd+co4l0m0KsxTmSeYT4gzhQ/lcqhBBCiD8Dx8Fe/C/SFp2GZoexNQ/bcv5KQcYlxG2DmAWff5PDedf1JhjSeenxNVw4ah5O2UrcsQ1kaMtouWMiPTbmJgttcSODSNdJaMcvhGYj9mpdNquOZdD25vUDmcejer+mp6uA6fWqn6YJ4UB/CnrOYUfnV4l5W6v9S2fTaM35ZBU/iUsL4TbB4wW318SVmYfLraa4sSKVfyyIWjRpFOblhxYy8bLVPDm1Kced4GPZ0kitsJ4oagaDYIXDlG9ZRnm5RUm8JVtbPkg4+2QA9MhWfHOOxr38LozoNvTi+VC6EqdiA5SthML5EC6o55YUQgghhBCiUvFimDmgqtCWewUc+WaNQhtUjWwCVXSJhixwwLFVoW3GZ0248KZeuF02bzy3ijOHzoOylfjsDaRrK/FVzCfdW6Bm8/CoToC77QjoOLDpPZh5JHzUHza+CTiguYg3O5XgYTMpPHwxG9IuwPY2rfHWgy7zNDgEej8AozbDkW/gNDkBBw3NieHPf4mc7/uRPncA2qbp4DjouspCAOhenEAepsfEMNijzNOmZZA3nvyeS89dz70Pt2TESDdrV+955olGNSIRsGI60WbnEOn4TxwjgOZYeBeNx/PdGVD8k2QeIf4ApNgmhBBCiPphWzD3QlxLbgEgZjZme+4rlHiH4AChsM79T3Tgtvu7MLDfZqY//gEDOnxGZloFqQFI0dbQuvBKmpQ+iGGX46BR2vBCygYux8m9Qi26vbeXZO/+dcfZ/ev1KbGuXCikfv7StYMK44GACpceT1U4t21A0wg3PI2KQT8Rzr0LR/eiOTHSCl+k0bqLSdWW481uj57dm1A8G1Aj5FKMAiJhC48HfF611sF5p23g9cfnY9sOZ45zM3myus6EWEz9DIehoqgAK2wRj0E0qlFW4SE/80pKWv1DhU5sPMv+hueb4RDehu1ULXYeCVtECpYRrgjvcRsIIYQQQgixX+TPhplHQWizet7zP9BnUp1rnNm2mmEiGoV4NEIsprJFaZnBnZM6cc8jeZw8ZC3Tn/yQXi2+IDOtgkBAjYgyDHC5LFwVywj4wvj9qgOdq6644ziw9WNVYPtiBOR/pba7UtUUjCPXEO33GvGcIaDV/WfggzbzGG5oMRrt6Pdwhi8j2uYKHCNFvVQ0h7SFJ5E9vzfe/Dfx++xkB0TDnw2ZvXFltseb1WKPMo9pOlx+3lpenLKAHUUuTj/D5Jlnas6SsnPmiYYsohEIhzUqKqotXZBxOOHD3sL2twPA3PY27iXXYpXvIGpBPGYRLZTMI8TBSIptQgghhPjtRYvhs+Nh9dMAWP6urO84Fyu1D6YJa9d7GT+xJzM+a8ztl37Gg9dNo3HqZlyxfDJdS2jPY3QovBhfdCkAEXd7dnR7h1ivJzBScvZmMFsNvzRdyr4ed3+zLLWOXDRauQZb5bpye9ILtUZPzmrboHJRddOLlfdXKgYtIdbweACMyEbSfhpPyvIbcVFBWpoKnR4P+L0RUiv/EOB2Vx2vfesKXn9sPmeeWsK998J558HWrep121aPUAiIR4hEobwCIhGdWBwiUShxH0lx7hPE0w5R11AyH+8PFxLfPh8HFU6LiqAw36JiR4EKsXvYBkIIIYQQQvwqm96FT4eAVQyaAYc9q4pZuxGPq+/JLo8HB1ixJoULb+rNnPlZ3HvdB/zr8umku7fgsvLJNJeRnVGSnPRRAzQs0r0FZGRUTku4czbJnwOfDIZPj4XCuWqbryn0+DeM2qCKgf7mf47Mk94Brc8kyo/dSLjzvdjeZgC4yxeQuWQ0gS974N76Bh63Q2oqpKZ7wdcc29+OuKc5uundo8zTvVMpbzw1n+FDy7n9dpgwoWqt7OqZx7EilFdAKAyWpRO1IBhS9xWPgeNrTfiwt4il9wPAVf4jviXjieb/TH4+lBRbREol8whxsJFimxBCCCF+U3bpGuwPD4dtnwBgZR3Hxs6ziXtbEopn8/FXDTn1kj4Ewzqv/Oc1xp34A34/uL0OLnsHDfP/Q4PSV9CIYWtuirMvpjTvEbw5nTArF7ZO/Nxbv/S+fT3u/vRL68rtSU9H01RTSCYWU09JqZpSMsFJaUuo33uEev8PpzKcere9TKPvuuDf8XYyeLrcHkxTFeocRx3TMCCQAhnpDtddVc7998OPP8Lxx8OcOZXrI8TVfqGoh2AFxKzKEWthwFH7hLXGhPpOw2p5AQB6rIi01TfgWvcMpSVxLEsdJ1wRoaxMvX9P20AIIYQQQoh9svp5mDUK4mG1ltZRb0Hbc2vskhiRVVEBpaXqZyymvitH9WxmfNqEsZf1wuuJ89q9LzNmyM94veB2O2guH153nIC2nvTUKF4f+Hxq7a+AL1I785Svhi/HqOkst3+utnlyoNd/4aRV0PkGcKcnr+1PlXkyMtA6XUd06CqihzyM7W0BgFG2GN/8U/B/1R+j8Et0HdLSKjsf6lWPPck8OZlx/n5LKXfeCV99BcOHw8KFVZlH06CkwkPMqp15YjG1ThyGBwcfxa3uJpgzFgA9WkDKz1diFs4kHAIrHEkW2iTzCHFwkGKbEEIIIX4z0a3z4aPD0Mt+AqAoazxLG71H0EojGoUHJnsZf2MnDu1ZwofPfcRh3beRmgpen4kvtIAGW+/HFdsCQDylM8V5TxFrNhZfigvN9ABVAWlf1DXqK+HXHHd/2l/ryum6Co5erwrvfn8dO2karrZjcE5YQrSy4GVY28j8cRQZS89Gs3YQM7IxPSaapo5p6FU9bV0eE5c/m8MPh5dfhpYt4fTTYcoUde54HELxbAxXzUQft9WsNr4UE8fbFKfr7YTz/onjSkPDwbvleXI2Xo8eU91Gbd1DLFYVOqWnpxBCCCGE+E38dC98cy44cTAzYPDHap3oaiIR2LED8vNhwwbYtEk9EoW3u//Py7W353H84EJmPP0RPfIK8fvB9HowUltjuhy1Hhtx0n0l+CuLbT4/NTNPvBx++Cu82xk2TFMnNzPgkLvhpNXQ8WpVDNzJnzLzpHhwd7mU+PCVhLs/ju1rBYBRPBf/nKNImT8KT+RnoO4i1p5knmOPhRdfVEXRUaPg+efV5xaJQNjZdeYxPSaGPxvH8GC6Dex2FxNu/zcczYPmWGRtvZv0gieJOer9knmEOHgcAP87FUIIIcQfUXT9x7i+GIQe3Y6Dxur0e/nR9wgVQRcbN8KVV8Ijj8D48RpPPptCkzbN8WS3xvQ3IK3gKXybn0EjjqOZRBqOwcqdiDujuRqR5VYBZefRWfui+qivxGN/HHd/+a3Wldt5tFv1+9a96WiHPklJzxnE3WqUm3/7izT8tgv+si9wZeahGSa6UW3hd5eJE8jDcHtp1AjatFHh89pr4f774fzz1R8hQlEvsUBeMnyappomx9HUouSmx4s7NRut0UDC3Z8gFugKgDe0kMbrLsITWUJMz07et2UdWOtMCCGEEEKIPwDHgYU3w4Ib1HNfUzj2S8gZUGO3SERNI1heDps3q4JbQYEqtK1dCxdfDC+8ALfeCg8+kkZ2i5b4GrbGlZmL3qALtpGO5lIFNZcLXLoa2VYj8/gdzI1T4d1cWHI32BHQXNDxWhi5GrrcDGZgt7eT+O7v8dT+7n8g+M0yj8eNu/NFWEOXYXW7D8dsAIC++W3097vi//lqjHhJ7fd5vXuUeTp2hNdfh7/8BW67DS6/HMrKIPwLmcfj8+Lyq4KerkEkYzD5rScTc+UAkLbjRdKWX4EWKwck8whxsJBimxBCCCH2O3vta5izT0CPl2NrbpZlv8rG1OtA01i3Di69FL7+Gu69F666ChzdS8xsgqtkPukrLsMsX6COE+iAlXszeqMjMDxe1cvTb+LJVgFlf/XCTPSANE0bj+fA6N2Z8FuusVB9tNvO922akNLheIoH/Eio6V8AMKJbSZ0/DPeK/8PI6oY3uz1GWgtIa48V6E3IzsbrVX8o8HjU1Cx/+xt8/DGsWAGnnqp+huLZRFN7423YAXdGC7S09hg5vXHc2ep+DC9aeh6OrxllHf5LebaaWsWIF5Gz7ioCm6egVa5o4TgHzjoTQgghhBDiD8BxYP7VsPT/1PPUDnDsbMjoWmM324aSEjXyKD9fFdgSBZFly1Sh7eefYfJkVYwxTJV5bD0D0+vH0G1Ml42vYQd8AY+aqtDtrpl5YpvQvzgOvh4HITXjB01PgOE/Qq/7wN1gj29L18Hlsuv87v97+80zj9+D2e1atJGroNMNoHvAiWOseJDMr/NILXgB0+XUKEI67myMnN6/mHkyM+E//4G33oK5c2HcONi4cdeZR/dmq3tyeSE1D3RTrffm78C2lo8Q8XUGwL/jHbIXHoke3iCZR4iDxAH0v1UhhBBC/CEsm4I25ww0xyKup/Jj1vusjp1KaSl89x2MH6965j32GBx5pJq3nlgI38q/k7b+LrR4BQ468RZno/d9CHfzYzCzOmFmdUVPbw9ZvaEyoPwZ/J5rLLhckJadQaz30wT7Tcd2q56W7tX3kf7t0aR4gvhy2hEzm6O5vPj96g8MwaAKg7atnvfrHWb2J5vp0DbE+ec7zHjPQjfdFFSkU6G3wUxvjulRc9sYhuohbOnZhP29Ib0j4Q53kt/+KeJGOhpxcjbeQMMVp6DFStC0A6dHrhBCCCGEOMg5NswbD8snqecZ3eHYryDQutauwaAa0VZeDsXFakRTaSl88QVcdpkq2jz2GPTuDdGoek/MyMbtMzGMyhFmHnB7XLizu9TMPA26w+qnYEZX2PqxenNqBxg0Awa9B2l59dIc9aXeMo+7AfT8N5y4DFqMAUALbyP1x3No8P1R+CKLahT+UtK8pOQ036PMc8ygMF99vIXMjAh/+YvDV7OiGO7amcc01XtsG8pjlZknrT2utBbYmYeypctXlGaqzoZm+UJy5vfFLPlGMo8QBwEptgkhhBBi/3AcnB/+DvOvQMMhZjRkfYuX8Gek0jZ9Lt9+lc8NNzi0bw9PPQXdu6vQ5I+voOmS/vi3PAOA7WlCpMsDaO0vAN0EzYDM3pDeCfzN61yH4I/s915jITHljNFiBNFjfsBuOAQArfh79I96kVbwLE2bOAQClT1AnaqFxB0HnHABFM2noXc505+dx/hzNnLnXSZ3/cPBMBzS06umsjQMCIXUHyNsGzC8VNjNCRrtCDY6n/Wd5hP2HQKAv2AaOfP7kmYvPqB65QohhBBCiIOUHYOvz4NVT6jnmX3gmM/A27DmbrYaxbZlCwTLwrittbQKfEvb9Ll8+n4hf/+7Q69eqtDWsaP6npuYutGb4sWVoUYzAbiMyoNWzzyRAph5JCycCPGwmjKyy61wwiJoenz9tUc9qvfMk9IKjvwfDPpAFTEB146v8M/qhe/nG3Aboaop9nU1Y0fTpvxi5mmRvoyZr8zllOFbueEmNw/eH8ftrso8qalqHeuKCtXp1OWCsFWVeWxPc6I0oLjTi5S2uQtQa2infzcIff1L+7kRhBD7m+v3vgAhhBBC/AHYceLzJmCsfhwAy92KrQ3vIrxjA9HgSia9fDhPv53DyUPXc+kVfgxXNoYBDSOv02jNBejxMvW+RiOJHPIIHnccXYuA4QFP9p+uwLazRCEqMVd/YjRXfRWZEtNN4mkCx3wIP90HP9wCsQr45i94Wn+K2edRysN+4nFVLHO5QCdMOH8ZtmVVTlfp8O9bV9H3kDImTMxjyU/teOop1dvX61WFtp3vOzVV9RrVddB87SjN+RqWTcC7+VlcoRXw2aHYfR/HanY2tq32q8+2EUIIIYQQfwDxKMw5Czb8Tz3PGQAD3wN3eo3dLKtqBJseLSAluJhwwc+UlUX511ODeOPTLM4ds4pxF6TjOCrzpKSo77QeT+Wp9Gy0jAAeraBm5tFMWPIvWHwb2JbaOeswOPSJWlNY/hH9Lpmn6VBotBh+vh9+vBMtHsK14l5cW9+GQ5+Chkcmd02sd1deTjLz6Do48TChHcvQbAufDwJ+m8f+s4x+vUq54Y4OLFjUhqee0mjZUr2/oqLue05kqLQ0iMc1Iu3/SmlaR1J/PActHoQ5ZxErXILV6U50Q5fMI8QBSP5JCiGEEOLXiUdxvjo9WWgLe7uzodEkwhVlWOEYNzxwPE+/3Y+rxn7J3857mwYsJj2llIbrr6DJytPQ42U4mgur233YA97En9kEM605pLb7U45k25Xdra9WrzQdOt8Ax82BQDu1be0L6B8fpopfqF6blgWRkgKCZRaRqAqVkSi4TBg7ejuf/u9rYpbDyJFePv1UBda66LrqQZqWBunpkNbAh3bY09h9n1BrLcRD6N+MQ/tuArFIhGjluSyrntpDCCGEEEIc3OJh+OqUqkJbo8FqxNNOhTbbVkW2/HyoKAtjly3HLv2ZYIXDlfeM5K3Pu3HLBR9z9akzSLcXkxYIE42q77GZmVWzObjd4E/11sw8wU3w8VGqQ5ttgeGH3pPhuNprxf2R/S6Zx/BAl5thxE/QpHLkYNkK9Xl8ezlYZTWuz6gcjeg4qvBqlRUQDlpEo+r3I26DzweXnLuFD16aS2GBwYknevn667ozSuKeU1PVw++vyj+BTmPQjv0Sx9cMANeyu3F9cwrRYIVkHiEOQFJsE0IIIcQ+s6Mh4p+PQtv4BgDF7oGsafoysbiLHSV+/nLbKcz6vh1TbnmfS8YuxWXYZJkr6bRlCA2Lp6iD+JujDfkCs9u1eLya9M47WGT1heO/hxanqOfFi/F90Qdv/ltEo1BUBPFohFgMrKhaOD4ahZilpss5pEs5b77wNUceGWfkSLj77qoF5euiadWCt1dD73Ah9pDZ2L7WALjXPYJ/zpFowfWAOp9t/8ZtIIQQQgghDm6xIHxxEmyarp43PQEGvgtmILmLbasZGNauhaVLYds2IFyAEy5m49Y0zr7lNBavbMLT/3iHs09aha7bZHgLSPMUkJmpiicu1y6KSI4DKx+H9w+BgjlqW9ahcPxCyLtcdXQT9SOllVoPr//zam03gBUPwYxusPWT5G6JUW1FRWqtaduKJPNOPF41W4fbhP59S3jrxa/p1MlmyBB46KG9yDyVvyd2Ri8qjviWeEY/AMytb+KffQRaaINkHiEOMPJ/bCGEEELsEytUTvzT4Rjb3gdgqzGCL/QPKA952LTV5LSrR7Bucwov//2/jOzzHhmulTTJ3ErLoon4g98CEG84FIYtgJzDf89bEfvKTIMjXoNe94NmoMVKyVxyMikrbgInhq15auwej4PtQKxyFFtKus7LL0e5/Xb4xz/gL39RU0bWRdNqb7NSe1Nx1HxiDU8AwCj+lpRZPTA3PoMR3YgVCe/HmxVCCCGEEH8oiULb1pnqeYvRcOSb4PIld7EsKC5W67OtWaMKLIWFECyPsGKNj1OvOZGyco1p//wPx3T5mAbmSho28ZAasGiQGqFBA1Voq1O0GL4cA/PGq+nZNRd0vxOO/QrSOvzWdy/qomnQZhwMXwrNT1bbKtbBp0Ng/rUQD6NpairJhOqZJxoFXavKOwANsmH69AhXXAHXXQdXX63229Xpd2ZZ4HibEDz8c6ymZwBglC4kZVYvzO3TJfMIcQCRYpsQQggh9podLkH7/FjMHZ8BUJwygsWpLxKJeVm63MeplwzAZVi8+c976ZG7Dk2HlOhCsrbdixHfAUCk/U3EjngPvNm/562IX8l2NCJtriFyxGfYniYA5OT/m/YbhhKLa+gutfi76QYN1dMzEgYrbhJx0tB1uO02eO01+OADGDoUNm6sfR7TrOPcNuDOJNRvOtEOE3HQ0KwiPAsuwLXkb1DwLYQLfrubF0IIIYQQB6dYCGaNhG2VI5ZanQEDXgXDndzFtiFUESZethG7ZBVZvo14zTCWBd/9kMLYyw+nUUYx0/55Lx1abMVwgamF8Nur8KX68aV61LrDdRRQKPwW3u8JG99Uz9M6wtBvoOutoO+qOifqja8xHPmG6ljoyVLblv0X+/1+WAU/JqeSBIho2TUyj22rYlokUpV5XC7473/hiSdg6lQ46SQoqCOm7DLzABg+rG6TiLa8EAAtWoBn3hj0n/5PMo8QBwgptgkhhBBi70QK4ZOBuIq+AaDEfywrjavxRRaz6qcSLr2mMU0blvLaP6fQsvEODM0mw5pNasXHaMRwNDfhHs8S7fR/mG7jF04mDmSWpdZHi0YhmnEk5Ud8Tyh1IABpwU9pu3ogXo+DL0WlxlhMTSNpY2L5cikq1ZPrDJx6KnzxBezYAYMGwdy5VefxeuteryGxTXOixBqOINLp3ziuNDQc3BufxfzxeiiYp9bhEEIIIYQQAioLbSfB1o/V81ZnQP8XahW5YhUFOAXziRevJLxjA9HClfjD81k0v5SrbmhEl/bbeOnOh2mUWYamqbW8TBN0J4LLbYJbdSqsUUBxHFg2CWYOgIq1alu7C2DYfMjs/dvfu9hzmgYtT8U6djGxnKEA6KWLaTC3DxnbHsRt2rjd4GhejIy8ZOaJWhCPQdypnXkuvBBmzoQVK1Tm+fHHqtP9Yuaxw1C+nFizs4jk3o6je9AcC/PnO2DBDWqkphDidyXFNiGEEELsudA2nJkD0Ut+AKAkcCJrfROxMfjo8wz+fmcq3ToFue+v3xHIzEI3HBrZM0iJLgTAcaUT7f00VotzdxkmxMHBttW6BNVp/sYU9/qYHTlXAOCJrqLJ8hNwxbeip7XHSG2Blt4eLbs3lq56iFZfZ6BPH5g3D9q3h+HD4ZVXICWl7h6eULVdjxWAbWFn9CHc/XHigU5qe9E8mHd+1R9ShBBCCCHEn1tiRFvi+2HL0+sstNlWmHD+MspLLcrKVOeyeBzeeDeHu/+TyhH9S7n7xoW4UxuhuUz8PvD5wHTruNKaoqc0wdG9NTNPYtrI+VeBbYErRZ370CfB5a/XZhB7xrYhrDUhdOgMwl0nqQKXHaHJ5qtpsfoEPE4+Hg9YRjbR1N7oae1xpbXAaNAeO6PuzDNwoMo8DRrAscfC++/vXeYBiGcNJNxlEnZlQZc1z8JXp0nBTYjfmfyJSwghhBB7JrgJZ+ZRaKVLAChJP4V13msIhXVe+F8z7prcmYGHbWfyv1aCESAYb0xDawae2DoA7EAeVs/H0RoN3G2YEAeHRO/MnfkDLoKdJlHQ7nEczcSwy2i84lT826dSobXFldoczfDu8liNG8Nnn8G4cXDxxXDDDeoPG7uiaRANRrAstR6c42lEpMuD2E0r11gIb4MvR8OKR3a/GrkQQgghhPhji4Vg1qiqNdpangaHT61VaLMsKC8sIFhmEbXUNOjhCDz8fCseeDqXkcdu4j9/X0PMSaPE6YLT4FBSmnXF17gzrib90TN7ofsb1sw8xUvggz5V00amd4Wh30Gbs+vt9sXeS+YUTcdqcwXBo+YTTzsEgPSKD2n9cw8CoS9xu0EzvESM5hjp7XC8zXH0XWee1q1h9mw4/ng4/XS4++7dR5WdMw+AE8jF7vWomoIUYPN78PFRENy0f25eCLHXpNgmhBBCiF8W3Ijz8SC08uUAVDQcR0nOBNA1Hp3ahinPdWD0sA3cMP5nHCOFnJR1dA5fhcdaC0C84bHofSfhTm+GO5AtI9r+AJJrB+xE18HvB6ftRVQc9gm2mY2GQ86mm2m56Ww8rlCt9ziOOl4kov6Y4Tjw2GPw4IPqMXy4WtOg+jkTU1g6Dri8alHymKWCqNdvone6ErrcCrpX9QD9dgJ8fY5afF4IIYQQQvy5JAttH6nnLU+Fw1+sPaLNhmAQrEgEwwBDV8WNex/rwNQ323DumNVcOm4lMS2FlFQTdDe2pzFRb0figc6YqU1w+1JqZp4N0+Cjw6B8lXre7gIYOhfSO9bb7Yt9s3PmsVO7EDxiLuFWVwFgWptpsvRosrf/C9Nlk5kJHk/dx9o587hcaiaP22+Hv/0NzjgDSkr2IvN4wZWSBb0egIZHqzfsmA8f9oXC7/ZvQwgh9oj8qUsIIYQQuxfcCB8fjVa+EoBwi/HEmp6B22dw76Ptee5/rRh/1iomnLOaFD+kWXPpFr4cj5Ov9m9yLvHcm8FIgbQ82GlUkzg47a5gapoQCIDZ9Eiix3xHPLU7AN6tL+GfczRaZHuN/WMxFSKtcBgnuJF4ySoq8jdyzllh/vc/+PprGDwYfvoJysvVvjWCqDsb02OqNRMc9YhaEGlwDFavx3FSc9V+a6fCh4dC6bK9utfqoTgS2XWhUQghhBBCHIDiYfjy5KpCW4tT6iy0AViRMAQ3YsYLcOtBXG6d2+7rxNsfNeW6i3/mnDHr8XjA0X2kNMkjp5GJz1s5KskBNLMq8zg2LPq7mjoyVg66Cf0el2kjDyJ1Zh7Dg9X9ASp6vYHjSkdz4gRW3kLTFSPwUrDLY+0q81x1eZjnn4d33oFhw2D5cigtVdkjWH1WyGqZJ26rQlwkAlHbg931H6qjIUBoC3x8JKx7ba/uVTKPEL+eFNuEEEIIsWuVhTYqC22hphcQzBxNvHQ11/81h6nTmnHHdcu46KwNpAagnX8GHXech+GU42gmpR3+SyT3b5DeAbJ6gzf7d74hsb/80jSgHo96eDNboR03G6vxaACM4rn4vzoMo0KNkrRtNU2kYRWgF8+H0pXY5WoB+nj+fIYcWcDMmVBcDMccA199pUJqNFoZVi3UFC2peaCbxGKqIBezKhclzz6e8iO+w25+mrqwkiU4H/TFWv3GHgXJRG/SaFQF5OrnFUIIIYQQB7h4VBW7tnyonrcYAwNeUoWvnYULoHA+dslKYqESIkVrGH91c2Z8msP9f1/K2FFbSU2Fho1NMhtn40nLhszeGBnt0QItIK19VeaJlsAXI+HHO9WxvY3hmM+h/UX1dediP9hd5rGbjcYZ9j1k9gbA2PY+/lk90XfMqb3vL2Sek08o4O23YeVKVXBbuBDKymrmjkTmiTkm4ZBaBy4eh1jcJOzuiNX5Thjwiir0xsMw+3RiC/9BKOhI5hGinkixTQghhBB1C26qUWiLtb6AaNOziVgeLrpjFK/MyOOxOz7hkvO2EUhxaMNzNCn6Dxpx4kYG27t8RHmzqyHQDldqcxnR9gej62rqkrrUWAge0D0BOOJ1Iu1uVM+Da8j8bjDpkflqeh7CULasasHvmHqfE7eIFy2jY26Y6dOhaVMYPVr1+kxILDYeN7OJpffG8rYHv/pjh53Rm7iZDa5UKnq8gt3zARzNhRYrw/zmFIwfriMatnYZJG1bHb8u1Rc5F0IIIYQQByA7BnPOhM0z1PMWo2HAy3UX2uJhKF2GhoWuQ3nIy5k3ncLMOS158T/vM3ZMIYEApGaYeHPUyDVdB8PtxTKb18w85avVtJGb31XHzjoUhs2HnMPr797FfvGLmSetLRw7GzpcpvYPb8Q/ZxDm2kdrLML2S5kntmMZh3QN8+676rgnnaTWsYaaucMysgl5e6Ol1c484TDYLU6HIbNwvE0AcC29Dde8M4mGQpJ5hKgHUmwTQgghRG3BTfDxoKpCW6sLCOacTXGJzrlXdWH6x0158j+LGHNiER6fmxbRp8gufRYAy9Oa/J5ziGcPwutV63fJGm1/TKYJKSngdqv/drupuRB89X3dOmbfe7B6PoKDjh4rolvBBHzbXkWPFSRDJ9QMdE7cwgkVkJUFL70Eg4+Oc/HFDk8+VIA7thGD8P+zd9ZhclX3/39dG1/NbnTjsiQhblgIBII7P2hLkeJSijsUdynWQoFCW6BC+ZbiFogAIUZIQkhg4y6b9d3Ra78/zt6dWYtAsrHzep55Zu7Mufeec2Z2732fjzWIxpQlipKbgd7YviZFyRWFZI+riR00FSfQGQDf8j8QnD4eJbG+RSG5NU9O6ekpkUgkEolEspvi2DDjN7Dmv2K78/FwUCuGNsCJl5FMmCTiULpZ48xLBjP92wL++cd5HDU+hj8cJKeoD74OI3CMAnw+oXN0ncaaZ/N0+OQAqPlRHLjX+XDkFAh1botRS3YCW9U8mh9G/REOfgP0CIprElhwOcHvL8GnJQmFXDSNLWoeM2mi22V06QL/+Q8MGWxz9tkub75Wit9ei50S1jDTBJvWNY9pgpM3iughs7Czh4n+r/83oa/HoSQ2SM0jkexk5NKXRCKRSCSSxsTW4WYY2qLdrqM0dDabSjV+/dtBfDEjjz898D3jDqoimsrBV3I3odJ/AODkDCF+yHSCHfqTlwe5uVtPNyjZs1HV+nSRAfG8JcOqqoLR/zKUce/hamFU1yRrwQXoS59s5PmZeQxFEQXqYzEI62U8d98Mfvub1dz1YAHXXquS3PgtTrwMx0kLx9Z+c4kEJEPDqRn+AVbugQDoFV8RmjoMrWxKMyG5NS/OjC5LJBKJRCKRSHYXXBdmXw4rhUahwxEw9v9A8zVq5tWoqqmBirIk5eWwarXO6RcPYdHiCH95bD7DBtdRmyok6ebjyymiS7cAnTtDXh5kZdFY86z6D3x+OCQ3AwoMewLGvCwzfOwFbJPm6X4mHD0TsvoCoK/8C9mzj8Fnl4r2drLZMT1cF+yU0Dx5oTL+/ocZ/PLkDVxzS3vu/L2NuWkOSqqskT5pSfO4bn0dN6WAmiH/xiw4GgCtajahL0ejVs+VmkeyYzBr8c0+l86b/7ire7JbIY1tEolEIpFI0tQb2pR6Q9vGDvezVLuW5Ss1fnn5YOZ+n8VLj3/HoQdWoLlROmy4mWCVqH/gFh6KOmEq2R06kpMDwaCMaJO0QpfjSIz9lJReCIBv2R/wLX9cpPoBNF2IOssSnpTxlB9NSaDUlaA4JrdfvYKHb/+Rf7/TkXOu2I+qtUtJRBPYdvMUliAEZF0dRCvKSG2ag1lXRVW3+4i1/zUAaqqU4PQjUH98WBSyr2drv19F2XFTIpFIJBKJRCLZAbgufHstLHtJbBceAuPeaWbw8mpU1dXBqlWwboOfHxYbnH7xUNasD/K3p+YxfHANqlIf0RTwk50tDC3BIOTkkNY8igsLH4ZpvwAnCVoQxr4F/a+TN4z7GjkD4OhZ0Pk4ALTKWfRfeTb+2hkiAi4DVU3XR3NcSFp+DFVoHmyT+29azG1XLeX5V7tx4bV9qVqzRKQ7pXXNE41C9Waheazq9VR3volY+3PE+RJrCU07BGXtW836sSXkT1jSIoufRV/3XzpV/E1aZDPY45fAVq1axZ133snJJ5/MgAEDOOGEE7Zpv/Hjx1NcXNzskUwmt76zRCKRSCR7I/GNuJ8f3mBoW194H/Ot21m1qYBLbh7KkuUhXnxkPmOGVqPbFXRcdy2+6DwAzI6nkDr4E/Dl7MIBSPYk3Nyh/NjtrzjZAwHQSz/EX3IH2HEcu97DUgHLNUgpBTixMsykiWGIxZGzTtnIa89+x7xFWZx87iA2ra0kEBD1EDIxTVFcPBFNoMVKMBOmKCbuaMQ6XURNjwdwtQgKDsbCW+GLUyFVBWw9KlNGbUokEolEIpHsZnx3B5Q8LV7nj4TDPgA93KiJV6Oqrg5Wr4b162HJmgIuvGEY5ZUGrzw+l/2L61AQ93uBkIERLsC2WzifY8Ksi2H+rWI70BGO/AK6nrIzRynZnfHlwrj3YOAdABh2OcFpx+ArfachjalliQg0RQFVA1cxqE4WiOi1+tAzVYXLzlnLC48sZNJX7TjlvIFUllYQDDbXIZ7mSSVE7cG05lGJdbqA2m634yo+FDuGb+bpsPDBBgOJ1DyS7cZ1YNkrANQGR0iLbAZ7vLFtyZIlTJ06le7du9O7d+/t2vfoo4/mjTfeaPTw+Xxb31EikUgkkr2NRBlMOhKldgkA6wvuY1ngDioq4LobAqzdGOaZ+xfSq2stWmojXUuvwpcUbVPdLiIx4s3G9bEkkm3ANDqSGPsZdJwAgFY1k8APN4BZTTgCkWwDNacYVQ8QDibR1MZpTg4eVcXH/5hLMqVy5PGFzJ3b2NjmLaRYFoS0MnQlnTMllRL6MpVzELUDXsDJ2l98sO5d+HgEVMzdekH0Pf5OWiKRSCQSiWQvYuGD4gGQOwgO/wSM7GbNTBPicdiwQRjcNm6Ea64LUBf38+x939OxINZwz2m7Bk6kGFcNNA/eMGthyvGw7GWxnbO/SCPYbuTOG6Nkz0BRYch9JEf/E1sJobgm+twrCa5/GU1XcJz6WnD1mkfLLcYfDKC6STStsaY58egyPnx9Lus2+jnqxEKWLm18Kk/zaBr4nDI0mmueZN6RRIufxPWJzCLMvx2mnwN2QmoeyfazaRLULQOgLPeUXduX3Yw9/s9l/PjxTJ06lWeeeYaBAwdu174FBQUMHTq00UORlliJRCKR7GukKmHyBKheCEBZp9+zod0dVFXBnXfCpk1w550qHfvtRyCk0q3sWnzWOgBiPW8jOfhFUHXpzCT5aRjZMO596P4rANTaRUSWXI/mC0HeCNRgAX4/+IN+gkFwEYXoDUOIvwHFMSb/91t697I5/nh47710AXMQz4EA6GoSRQEjw6/K8052fJ2xD3oDel8k3qhbDp8eACXPYujulguiSyQSiUQikUh2PT8+JQwIANnFcPhE8Oe32NSyoLJSGCFKS+H224Xx7a67NCJFAyG7D5a/K0p2H1JZI7D1AqBJ8EaiFD4fDxsniu2OR8FR0yDcbeeNUbLHYXc+mR+7/w0n3AcAZcVfMUrux5dTiJHbFTWnT4PmCYchGPGD0ljv6BoMG1TH1Le+JTvb5cgjYfr0tD5RFKFPNA1wWtc8VngA1sH/hdwh4o2V/4DPDof4JmH4k5pHsq0sfg4A19eOysj4XdyZ3Ys93timSvO6RCKRSCQ/HbMWJh8LlfMASPa6gXV597BpE9xwg/DyvPVW6NIF1Lql9C87E8PeCEB59ycwBzzQoDrljbjkJ6P54KDXod9VAKjRZfhnnY4SXd7wu7K0AlTdwGeI35qui5+epkNhIbz3rstxx8Gvfw1/+IMQiD6fqKuh64AqaiTomhCthiEEqWGIWhtGMBvGvARjXhF1NpwUzLkKvjwN1azYekF0iUQikUgkEsmuYelLok4bQLgnjP8Mgh1abW7bIhJo9Wq49lphaLv9digogNpogE01RZQne1NrF6FogYb70Qa9U7cCJh4CFd+I7Z7nwWHvtxhFJ5Ek/L1IjJsCHYRRQi39DP+sM3AcBdtXhKumf2OOUYDPbzTSOyA0T1GRw6cfOxxwABx/PLz+elrXqGq9Rtma5snpCRO+gi4niQOXz4BPRkHlfFQVqXkkWye2Fta9A4DV/Vxc1b+VHfYt9uk/m/fee4/999+fYcOGcfHFF1NSUrKruySRSCQSSdthxWDqCVA+U2z3vYLUgEepqFS47jphaHvoIejXD3LdbxlnHUaATQBsKHoet/i6hhtwmV5C8rNRVBjxFNb+DwGigHdw2ljczdPx+cAmgBspxvCnrbo+H6iaAVnF+EMBXnkFbrkFbrwRLr88nXJS0yDuFmA6BpYl3tN1sb+mA6pBwi0gmQSn5/lw9GzIqc+YsPZt+GgobJ62TcNwHFF/IR4Xz5lpLyUSiUQikUgkO5gVr8OsS8XrYBc44nMIFW1xF0WpTx15jTC6PfoodOsmIt0UJf0IBCA7m4Y0e6oKVM6HTw+C+vT79L8JDvhrQy0uiaRFfHlw+MfQ5xIAtLofCH05GnvjV8TjIrWpp3n0/GIUrWXNE8kJ8N57cNFF4nHrrelTbLPmcSI4h/wPBtwsGsXWwMSDYe272zwcqXn2YZa+KGq2oWD1uHBX92a3Q9/VHdhVjB8/nsGDB9O5c2fWrFnDn//8Z8466yzefvttunbt+pOP67ousVhsB/b05xGPxxs9S3Yucr7bFjnfbYuc77Zlp8+3ncA/4wy0zV8AYHU7h9SAR1i3Js6VV/rZsEHlkUcS9Orl4q+dyYGcio9qXFQ29fwzSs9fo6oxLEt4yZmmeOzJyN9429LafCe7XoUZzaFwxZWoZgXZ3xzBpj6vY7U/BlsJEc4diGaW41oJLC1AUm+HY/rAjBEIwB13QNeuGldd5WPZModnnkni84nfp652Q40txrFNfEa9x6ZukAr2xqxzAHEPFwj0xBg7BeP7mzFWvgKxNbifjcPc7/dY/a4DRWs6HECcI5Fo/r7nVborkb/vtmV3ne9QKLRDjiM1z76NnO+2Rc532yLnu235ufOtrX8P36zzUHBx/YUkDnofV+0AW7lGLV8Ol10WIBaDxx5L0rmzSyxWnzVBg6wskTkhN1dsK4q4z7M3fIl/xpkoVg0Aqf0fwupzlbA47AHI33fb02zOB/4Bzd8L38JbUc1ycr45gtKef6S68NeA0AxOOISTNxAnXo6hNtY8AU1o8Mcfh+7ddW67zWDxYpuHH06hqtupeXreSSDQG9+8K1GsKO4Xp2D2vxOr341sqUaE1Dz7ME6K4JIXUQC7w1HE1I7Ayt1uvneU5vkpKK7brLznHsstt9zC999/z/vvv7/d+5aWlnLsscdy4okncvfdd/+k8y9YsIBUKvWT9pVIJBKJpK1QXJNe624iN/olABVZR7Gi033U1Pq4/PJ+bNjg4957V5Kba9JRmcl47bcYSgzH1VmY9zDJ9oejKHvN7YNkN8J1FWIxBcdRyKqZytC6m9FI4qDxffhu4h2PR9edhra2rTR4IGua2+h3OWtWFjfd1Iv27U3uvnsFBQUWlqXi1yGsVxP0J9EMg6QSJpFSGvXBthUCARdNcymIfUKPTfejOVEAouHhrOnyIFGloKGt44CiKCSTtPq3EQq58u9GsssZMWLEzz6G1DwSiUQi2R2IxL6h79qrUN0UlppNSbcXSfj7bHW/sjKdiy8uJh5Xuf/+lQQC9QWtUOrtCy5FRTbZ2alG9245tVPoteE2VDeFi8bKjndRkXPczhiaZC/HdRX8ZV/Sv+JWdISRYlngApYEryQQVIhEHBTF3areAZg8OZc77uhJnz5x7rhjBTk5znZrnpzUXPptuh7DrgSgLutgNnS5laTWkaSF1DySBvJqPqbXhjsAWNrlSaojY3dxj1pmR2ien4o0tmVwySWXUFlZyZtvvvmT9l+wYAGu69Knz9Yv7m1FPB5n5cqV9OjRg2AwuKu7s9cj57ttkfPdtsj5blt22nw7Fr5vzkdf/xYAyfYnERv2KtG4wUkn+Vm1SuVf/0rQu7eLv/wTOi87C9VN4Cg+Nhf/A1/P4/DvpSm55W+8bWlpvpNJ8NbwHQfU8q8pXHgGql0FQKLfXdDjDFADuL52uKqvlaML5s9X+MUv/CST8Kc/JRk4UNz26rrwyAwGIdPpzTRFHyBd881wyvFXTyG4+H7UusUAuEYuiUHPUJN3esO+qZR4+P0te3R69eN2FfL33bbsrvO9I7w8peaRyPluW+R8ty1yvtuWnzrfStVcAl8di2LV4mphkgd/gJM/qlk7xxH3d44jUkBWVMBxxwWoq4M33kjSqZOLZYnANK9Nbi7k5DS+b9PWvIHv24tRXBtXC5Ec/TpOh6N3wAy0LfL33fZsSfOoNd+R990Z6Mm1om3hqdQN/BMBLYahJbZZ80yfrvKrX/kJBl2eey5Jr17br3n8sflkfXcuWnQpAE6wG+bAezHbjSdqtWvYV2qefRjXJTDlINTq73DCvUgcOY94IrVbzveujGzbZ9NI7iwURdmlX2hrBIPB3bJfeytyvtsWOd9ti5zvtmWHzrfrwPTfQL2hzWp/LKmR/yEe83PaabBqFXz+OfTuHUTd+CGhZb9EcVO4apD4yHcIdZhAOLz312aTv/G2JXO+FYWG9CeKAmrHI4nmfklk5hEoyVICi+8Bey10/zVYGyG7GAIF6YPZCUiWgZ0Ezc+wwQV8/rnKL34B554b5Lnn4KijRFMv9UkgIJ490atpQpj6/RD0JVCrVoO/K4z4I6x4GVa/gWJWEfz2XLTuX5Mc8ATooYa0Q94xm/6dGEb6XLsS+ftuW/bW+ZaaRwJyvtsaOd9ti5zvtmW75rumBKafAlYtqAbKof8j0Glcs2Zeqju9fuWzvBxOPBGiUZgyBTp2DDYY47zIIcMQ93CNNM/Sv8CcSwAXjFyUwz8iUHDADhj1rkP+vtueFjWPdgBVo2eTM/9kjJpZBDf/D9+cpdgD78MXzgGbbdI8Bx9QwGefKZxxhsLZZwd56SU46CDRdJs1T8IhOfCPBFc9gbJpImp8Nb55v8XtdzfhnlfiqoGGvkvNs4+y8TOo/g4AdcANhMJZoIiUpHK+0+zly2XbzqZNm5gzZw6DBg3a1V2RSCQSiWTH47ow+wpY+RoAVrvDiY/8L7GknzPPhJIS+N//YPBgCFZ+SGjOqcLQpkWIH/AxTocJLd5MSyQ7EtsWCyCpFFiWeI6pfajr/wyOv4NotOxlWPYiOCmx2GLXK8hEGZTPgdqlosh37VLUqjkUZpfx5ptw+OFwwQXw8suiuaoKsVhXB7XVCRIVa9Fiy9CSazETCSwLVKsMHFGM0HIN6HsZDHkY18gDwLfqz4SnDsLY/AG6ki5ckEw2LxjuurKIuEQikUgkEsnPIroGJk0QhgYUOOif0GlCs2aO07imVGUlnHwylJXBu+9C795pQ4HfL177/WK7keb58WmYdTHggr8QjpwCe7ihTbLrydQ8Ka0jm4dMIVFwMgBa7QKM+b+D+HrR2DW3SfN061DG22/DoEFw1lngJW3bLs2j+TH73Qp9rwBFRbGi+BfdhP+HG9FiS9FSa6Xm2ZdZ9Jh49hdAz9/s0q7szuzxkW3xeJypU6cCsG7dOurq6vj4448BGD16NPn5+Zx33nmsX7+eiRMnAvD+++8zefJkxo0bR/v27VmzZg0vvvgimqZx/vnn77KxSCQSiUSy05h/Oyx9AYBk9kFs7PMu8Y1BLrkE5s4VhrZhw8Be8xHG9FPBSeFqYVIHf4RWeAgBQxraJDsXxxHCsym6XUbS7YA64FlCJTegxFbDqn+DFYPiq8Vii79AiFDXbLyvKsRpKBTh2WcDPPQQ3HknrFgBd90lzpeqKcNIlmDGzIbz+4Or0PzFuEqShsoGXuL1gjGYg59EW/w4Wu33qLHl+GeejNLlfJye9xFzO5JMNk6fEo0KD+nM91Kp3aOI+N5K07RRRgv/w7alzc89h0QikUgkkh1EogwmHyUMDACjX4Bu/69ZM8eBmhrx8FJEnnMOrFkDH34IffuK67ffLyJ0WopsA2Dhg0JDAQQ7w/jPIKd/24xVstfSoubRgkT3exr3R51g2X9R4mtg9pUw9EHI3k9onK1oHqeqhKxwhJdeCnDnnXDNNSJzzbXXit/4NmseFOh2BkR64y64G8WqxVj+R9yK74j3vAXDn43jKybmFEjNsxuwNT2yI/SK44BV9h2+jZ+K7b5Xouq7T8rI3Y093thWXl7O1Vdf3eg9b/vVV19lzJgxOI6DnfGfrKioiNLSUh588EFqa2vJysrigAMO4KqrrqJr165t2n+JRCKRSHY6ix6DRQ8BkAwNZXm3D6gpi3DDDTB7NrzyCuy/P7D+Y/S5wtCGHkY57GP87Q/ZpV2X7DuYZtqbONMTGUcUFFCDhSgjnoZ5N0HtElj3LlhRGPlH0cw2sWyRLVVRQdfE8TTFxIqWYVHEjTdCURHcd59YcHnqiQSRVAkuJqqaFr6ubaLUlmDndU7fLHsK1EnhJGuIF16AkbuS4LoXUZwE/rV/QSmfTkWXNzDDA1GUdNoiEEKzqbhJJMQiz44WRPs6XtqoTJoK/W1p83PPIZFIJBKJZAdh1sKUY6HmR7E95CHoc3HzZibU1sLmzWLhPx6HK6+EZcvgX/+Cfv1EO7feicqLbGuE68J3dwhjG0C4BxzxOUR67ZShSfYtWtU8rkW0y5VokQ74Vj4PZiXMuRYG3QkFB4qUkcmyFjWP4wj94ibKUJQi7r0XunaFJ54Qmuf+exIEYtupeXL3J9XrOvSVf0FLrcNX9QXqD2uoLLoPKwg1TgRFD0jNswvZmh7ZEXrFO0Zg4f0AuGqQWOff4jel5mmNPd7YVlRURElJyRbbvPbaa422hw4d2uw9iUQikUj2Spb+RRgngFSgL0u7fsymslzuvRdmzoTHH4fiYtA3f0Jk0SkobhL0MBz2EUhDm6QN8VKMGEZjL2Nd8aMFxXuOnos16A/o39+KWvM9bPoc5lyFOeQpzEwhYYNlgm4IERrUktiKON5550GvXnDFFfDLX6m8/rRCh0JQNUABrT7Vim2auCigGuCY6PW1CZxkNa5tgx4gkXs60cBostc8hD+xEF98IX2WjWZDx0eJdr4cUDGMxgaepgs6me9JA87Pp2naqEw8oe+93lKbLYn9rZ7DqUVb9y7heAqQHvASiUQikfws7CR8cQpUfCO297seBtzcrJnjiFR5FRXiUV0Nd9wBixfDn/4kUkfGYpCVJe71WsR14dtroeRpsZ3VT0S0haVjvmTHsDXNQ/YZOOH2KIseQHESuPPvwO13NeqA6zBTyWaaJ5UCxwZ/AFwlrXmuvFL85q+9FtasUvjr4y55OduneRwtl7puNxIofx9/5WfoiRXkL7+Mdbm3YHTsTtIuIpVKj0dqnrZja3pEUX6e3sk8h1rzHcYGkZfU7H4prr+gka6SNEbajCUSiUQi2VtZ/V+YfSkAKb0LM0MTWb6+A3fdBV99BbfdJnK6+8o/oWDRyShuElcLw2EfQvuxu7jzkn2NzJv9zPoZWqgAVTOwbXGzb7kREvs9ip0zUjTeOBF19iUoVjWqtRk1uQ7V2ozrpKiuhlQSFN3fUADc54MjjoA33oCKCpXjzh7OD0vDaPWeoXZ9rQHXRSjXrGJ8AaOhf46ZEsfL64ttOSSULmwqepqynAtx0VDdGF02XElRyWEEUosb1SrwvKgz8d7bmmCS9Q62DdPc+ufb0ma7P3ddtLLJBOaei/J2R/yzz6bf6kvArN7ywSQSiUQikbSOY8HXZ8GmSWK71/kw7LEWrWVVVbBkCfzwg0gZftttsGCBSB3evbuoH2VZ4jre4oK+68I3v00b2nL2hyO/kIY2yQ5lmzRP9jiSA57A1bNRcFAXP4m16GlMy0BxU400j51KEYu1rHlOPllEdC5dpnPCucNZtS64/Zqn3UBqim6jsvByXFQ0p45uFXfQvvReAj5xU6zrSM3TxmxNr8RiP2//zDa+krsAcLUQqb63bNcx9kWksU0ikUgkkr2RDROFMHUdLK0dM0IT2VTXnUcfhWnThKfbkCEQqfuUgWUno7pJXDVE6uAPof2hu7r3kn2Q1rwYXTWAEynGJqOBFiQ54FGsDseLzYpp+Bdei1u9GKtuM4mKdSQ3l0CqmpRtYGkFQLoWh88HI0fCp++X0i7P5MRzh/Hp1HwsW6RVSSaFIAyE/ARyC9Dbj4CsPhDqipM9EDd7IIqqo+v1/VY0atudzbrOz5EMiEimUN2XtP92CLkbHsUyrYbzN8V77+cagCSCrQl01922Ntt8DrMaY8WzhKYMIDR9PMba11BsoW7rQkNBC221zxKJRCKRSFrAdWH2ZbDmLbFddAqMfrHFG6rKSmFk27ABNm4U2TsWLIDrrxc12pJJkVLStoUhollEh2doW/K82M4fAUdOgWCHnTlCyT7ItmoeJ3sQif2fxfF3AkBf/Di+Bdfi1i3Dql6HWbuZZMU6UhUlqHbrmueww2DSR6WoChx71nCmzc7efs1jKCTbn0lpl8extDwA8speomjxePTUOixL/E1ZQvJIzdMGbE3PtFQLPZOt6R3vHGrVHIyNbwOQ6nElrj/9P3FbjrEvIo1tEolEIpHsbZTNgC9F7TVbjfBjx4+Jav154QVhaPvNb2DgQGjvTGR47cmoJHHUENXDP4RCaWiT7Bq82gUt4i+AvBGQ3Ud4F2f3wck/kPjIt0l0OlvsH1uBb+XzmPFa4jGIR21StaU4wR7YBFBVIQh8PrHI4vdDh675vP3q9xwwvIoLrhvEq292xrFFO9UwIFAgFmO0AISKIKs3bvZ+uKRzZuh6+uFmD2RV8QzKOt+LqxioToL8VTfT6bsD0eu+a1Fce+9ZVnohKNMz1EOKmW1ja+lQFGXb2mztHGrNd/i/u4zIxC4Evr8KrU7UkHGNXOyel5E4dBJLip4XKXkkEolEIpFsP/NugWUvi9ftD4OD/wVq82o4qRSsXy8Wl1Mp+MtfYP58uOQS6NlTXNe9678X8dMI12liaBspUkf62+3U4Un2TbZH87gdxhMfO70ho4e+4S2MlS9i2zamKaKX4lEbO1YK4ZY1TyAAPfrl8d4/FtCvV5RfXTGUtz9q/5M0j509jE3dXyIRHApAqO4rui0aJlJM6mm9IjXPzmdremZrKR63pncAVMXF/+NtALhaBLP3jdt9jH0RaWyTSCQSiWRvoup73CnHgRXFVfws7fIu5YzkL3+Bzz6Ds8+GESOgwJnCmORJaCSwlRCbB3yAmTdO5kiX7FIMA8JhIQ49b8xwWIgFVw1g+4qwg72xfUW4agBUnWTxAyQKTwVAS60ja+OfUXwRnKx+JP3F1FS7DbUEIO0tqargCwQIdejLC4+WcNYp67j7iX48+nxvIjkGem4xtdFAMwFo+AOQVQxqOs2KqoKiG5BdjC+cTUXn37NqwFySkdEA+KPfUDhnBIGSW8GKNhwrEBD7mqYQnKmUEKCpFESjjT07pZjZNrb2PyyznsR2H8NOwcp/45s6lvDUIfhWvYBii+/TzhlJfOhfqZuwHmXM8zj5Y+SXJpFIJBLJT2XRo/DDo+J13nAY944wBGTgOGKxftOm+lTjFjz3HHzzDZx/PgwYIO6pUilxbQ8GW7gPcB345somhraJ4Mttk2FK9k22R/M4we7EDppCKv8IsW/dPMLr/oSl5uGEeqDk9KPaKSYecxsiyyCtI/x+UPUAuUW9efXZRRw3vpTr7hnAC693Iyt3+zWPG+jI5v0/oqqLMMLo1mY6/nAU2avvIeC3G/RNJlLz7Hi2pmdCW0musS3rPsbmD9A3fwpAqte1uP6C7T7GvkhzlxCJRCKRSCR7JnUrcCcdhZKqxFU01vR4g0rlcF55Ht56S0S0HXII5DszOCF0AjoJbIKs7f0BRsFhhINb95CSSHY2ntdx0/daQ1dNajv9DlsJEy59Hd1cT7u1d7C28AksI0QwnKQuKrwxPU9PEKIvHoeYVYCdG+Gee8ro1beM+x4tYm15Z574g0YOYhHH7xci0HHEI2YXkFQjGEYZNklcv5+YWYBPD+DziXNZvoFUjf6a8NqnCS+7A8WO41/6ML51/8Qa8jRa95NRNaWhboFh0MgoCI2LV0sxs2143sIt1YLIFP/b0qaB6BpY+iIsewkSm/DWAFzVj9X5l6R6/hYnd1Tr+0skEolEItl2lr0M824Wr7P6weEfgZHdqEkyCbW14r6stlbcQz3zDEydKiLahg1Lp7RLJsX1ORAQBo2G67TrwOzfwtI/i+38UTD+U2lok7QJ26V59DCxAX/CWngjocr30BMryF91A2sLHiHl64XrOChOkkRCGFk8zePdlzqO0DzkR/jD42X06l3BH57rxZqKbtx7n06E7dQ8RoBY3wew8g4m78dz0KwKslfeTST+NRz4GqbWHtdNp7P0+iA1z45ja5pH17dT7zTFTqHOuw4AJ9CZVJ+btv8Y+yjS2CaRSCQSyd5AfAPu50eiJDYAUNPzIeKBEbzxV5NXXzU44ww4/XQIxOdyqHkMBlFsfKzu+Q7hHofh92/d+0ki2VW0JMo8FMNPMKhQW3ghKTtEXvmLGPYmikqvYlPnx3F9fQhoabHn90M4kIBkGW5tkqDrJ2EUYDpFnHE25HaAW2/V+NWv4OWX00LGMESqlurq+vMqAapTRaRS6QWcVEq013XIzgbD0PAPuQ6l+GThNb3hY5T4aowZp8Lq42HkM5hGL6B1wWSakJMjxcz2YBhCsJsmzYT+NrdxXdg0CRb/Cda9C25G4YNwT+h7OW7PC3DUdmgu6C2cQyKRSCQSyXay5i2YdYl4HSoSUWaB9o2aJJNQVZ5ANctwrSRays9fXuzAO+8YnH8+HHGEuIybpjC45eVBbi4UFGToHWlok+yGbEnzuHoYs9e11K5pT1bpy+h2GV1Lr2JN/n24OcPwBf0Nq/xepJyhJnDqmmgerYgLr4D8TnDvvTpr1sILL/w0zUPBcdQe/C1Z83+BVjUTddOn8PFg/Af8HTof3aj/mdlFpObZMWxNz2yLJmqVxX+E2iXi9dBH8IUi23+MfRQ5NRKJRCKR7OmkKnEnHY0SXQ5AebvfstEcxbv/V83Tz+qccmKc008HPbqIseZR+KjGQWd11zfxd59AMJj2gJNIdke2VNvACBfgC4j0JlU5v6I0/2rxvlNBp/XX4NauQtOE6AwEIKKXoVbOwapaipZcg1K3FKNuDn7KSCbh0ENFrY+NG+G00+D774UYTKXSotPzotY0IWQVRaQmyskR72Vni/fD4XrvzKzecNiHMPa/EOoqDrL+A/hgIOr3vwerTvS5hZQyoZD08PwpeN7CgUB9+pwW/r+12CZVDSXPwAf9YdKRsPZ/9YY2BTofB+M+gJOWwoAbUYPttnoOiUQikUgk28jGz2Har4QhzN8ODv8Uwt0aNXEciFeV4VbMoW7DUqrWr+G1v8Z45W8G5/06yjHHiNptqiruobKzoWtXYWyLROqv1U0Nbe1GS0ObZLdgS5rHFynACPiIdzibzYW34KKhuVG6l99EsHYKKaWgUW1qv1sG5a1rnuOOE2lXf/hBOOUuW/bTNE+woDvKhC+gWGgwEptgyjHw7fVgJxv6n5mmUmqeHcfWNM+2aKJmRNfAgrvF63ZjUHueJTXPdiCnRyKRSCSSPRkrClNOQKleAEB59jmUhf4fk77M57aH+3PUoZv47Vnf0jG4kMOcI/FThovC+h6vE+p3EpFIhkFAItmNaa22gREIoOYW4ygGug7JglPYXHgzLiqaU0OXJccSrP0KRYGAkUCtKwHXxHVArReMrmXiVpfg04WLZf/+8Oab4vhnnAFffAE1Nem+2PVBTl56IlUV73mLOl4EXSMhoijQ9TQ44QcYcDMoOtgJjJL7CU/qi7HqL+DazQTR1opbS3YQld/BrEvhf51hztVQUyLe9+VD/xuFge2wD6DLcaBICSWRSCQSyY5ErZwDX5wCTgr0MBz2EeT0b9bOTCYwy0qoqTRJmfD2R+158Nm+/OLENZxz4jyywglyciArSxgEiouhUycR3WYYiPCOb65sbGg7/BNpaJPsNrSmeYKRAE5EaJ5E3tFs7vIQjhJEwaLj5nsIrX0Wx3a3S/MMHw5vvCEin047Db799idqHsMHI56Cce+BV9frxz/ApwdA9Q8N+2YiNc9uiuuK6GKrVmiekc9K7bOdyNmSSCQSiWRPxU7Bl6dD2dcA1OacQnn2+cyel8119w7k4FEV3H9TCXn+NRwQP5qAK1JMVhW/TM6gXxAKZXh4SiR7AK155tl6Ab4OIyC7D2qkK4nuV7Kp92s4ioHm1FK48CjyEhMxnDJwRQ4TTzMYhhCLrmPic8twHJEGsmtXePttGDECzjkH/vnPdD88z0yv/lvme03fb4YehqEP4xwzH6fDMWJcyY0EvruY0NRhOOsnEo+LFEmOIw3hOxU7BSv/BRMPgY+GiLpsdkx8lj8KDvgbnLIWhj0KkV67tKsSiUQikeytBJIr8E8/VUT6qz449B1oN6rFtk6sjHhc3MtNnpbPHY/ux4lHbuLmK5YRCpi0zykjLw+KimC//cT9XDBYXxvLdUW0zZLnxcGkoU2ym9KS5lFVwF+Amyc0j9nhNEr7/w/L6AhA+3U3kbv8anKz7e3SPH37wnvvQc+ewsnw/ffT/dhuzdPlBDhuAXQ8SmxXzsP9eATmDy9gmW6DvnEcoXWk5tkNWfEqbPhYvN7v+lb/F0taRy6vSSQSiUSyJ+LYMP0c2PAJAKnCkyjL/x0Ll0S44rZBDOxXy6O3LyKkljEweQN+ex0AVX3/iNXtfEAWtZXsPTiOiHAL5hdhBnpjGUUkOpxFxcB3cNUAqhNH++oEWJtWj3qG96SigN8Hfi3ZIGh1XXhE/+1vcNZZcMcdcP/9wvPT+7tRlPQxMv+WMt9vCdOEqD6A6OiPiI35GCsyEACtdgE5c44iZ84E3M3Tse20R6lkBxJdBfPvgHe6wddnweZp4n3VD71+A0fPgmNmQa/zQA/u0q5KJBKJRLI3o8TW0HftlSipcmEVOPhf0PGIFts6DqTiSWwLZs7L4dq7B3LI6Aruuq4ETYOAH0K+JIWFGZFsZGie734PJU+KN/OGS0ObZI9D0yAUCaBnFZHy9yaRezSbh83ADO0HQGTds+gzzxRp0evZFs1TUAD//jcccwxcdRU8/bT4e/tJmifYEQ7/CIb/AVf1odhxjLmX4Z9xIlpqHVVVIk1lKiUi5lIppObZXYiugjnXiNdZfWHQPbu0O3sqcolNIpFIJJI9DdeFb66A1f8BwGx/PJW9n2LJyjAX3ziEzh0SPHn3AsJGBb2qryfgCENbdc9HMHv8Fr9fpo6U7F14os/vF4srWVniN07nY4mO/ghXj4i0RHOuhI0TG/bx+cBxhUclgOX6SaWE6HSctGHtoYfgscfgX/+Ciy5Kp1fR9XQfQqH0a8No2WMTxHNmQXC7/dFEx86jsu8L2EZ7MY7KzyicexDZ3x5HauPsRh6kkp+IY8O6D2DKCfBOT1j4gKgpASJqbdhjcOo6OOCvrXvTt/KdSiQSiUQi+QkkNuP/+iR8Vv31eNQLIuV2C5imqB2VsPx890OY3946iIH9anj41kXomgiv0TQIZfkJBNLp7Ro0z/cPiGs/QM7+skabZI/Ei3CLRCA/XzzrOd2pGTMNK+8Q0WjNWzDjfDCrG/bZFs3j88Ef/ygcDJ9/Hn73u7Rm2W7No6g4/a4ldshM7IgwBOqlH5D71f5klb2KY7sNNbW9v9FEQt5b71LsFHx1JphVuCikhr9C3AxKzfMTkMY2iUQikUj2NObfLtKdAYnsQ1jW6T8sWduJC68fQiRs8dwD3xE2qulVfRMBexUANV1vgwE3EQjI1JGSvY9Mw3HTtCtu4WG4h38GvjxwbVj4EKx7DxDCUUF4UjqKQUoRNQZiMfHwRF8gAJdeKmoalJSIFCtr1qTPmZOTFqGBgDheNNrYYzMaFULWNJv337R14l0uoXTMUqK978HVc0T/Sj8i/OVo3KknQ8WcnTF1ez/xjWKB7d1eMPUEWP8B4AIKdD4exn0AJy6B/jeAv12rhzHN1r9TiUQikUgk24lZA1OORa1bDEBq4H3Q56IWm6ZSsH69eCwoKeSiG4bQtXOcp+7+HlVxRHSOAdm5Blq4gEiExprnhz/Ad3eIg2X1g/GfbfGaL5HsrrSmeXyRfOIHTsQtOl18WDEbvrlK3Aez7ZonGISbbhKZPaZPh1/8AjZvTp9zezWPkzOU2KHfkup1HS4KilVFfsl5dFx8Mrq1oVmNa3lfvQuZewOUzwIgVXwPyexDpOb5icilNolEIpFI9iQWPQaLHgIgGRpKSYf32FAa4rzzA5i2wd+fWUjnwmr2S9xM0FoCQE3HK0jtdz+qKlNHSvZOvN92SwQCoBaOgSOmQKA94IqC3av+I9IRpUAzDNxIMZovQDgshKtXx8Dvr69v4MLo0fDuuyJy7qyz4MsvoX17ITw9z0xNSwvWpl6eiYQ4X9P3G+oh6FnEet1J3RErSPb9Pa6eBYC24V34eCR8Ph7Wf7SVonASHAvWfQhfngFvdxULbLHV4rNABxh4O5y8Ag57H7oct9Wi302jETNpyQvX++5TKVV6g0okEolE0hQ7AV+c0uBItDHvHKy+17XYNBaDtWuhvBxWrYLzLvATyVJ55alF5OfbBIJg+CAr20DLKyYQCjTWPEueh7nXi4OFe8IRn0OwQ9uMUyLZwWxR84QDKIe8Af2uEm/EVsM3V0Ltku3WPOPHi9rVlgW//CXMnfszNE8qSE2fJ4ge+AVWsI/oa/l75E0biL729Ua6RkqcXcSyV2DxswBYhUeT6nt7syZNNU/m925ZqtQ7GcjlNolEIpFI9hSWvQzzbgLACvZlVa+PqU3mctVVUFEBzzyrEe7Yl+51DxIyFwEQ63wx7vA/kpWtyNSRkr0awxDCz+cTrzPTkgCQNxiO/BJCRWJ76fO4q99Cze5NMjKCuCM8PFU1vb+qCiFZVyf+xlIpKCqCd96Bww+HSy6BRx9NC1RVTXtytuTlGYuJGgV1delHbW3jGgWKAvjySO13rzC69bkVVwuLDzdNhinHwYeDYNlfwYq32fzujjQT95WLYO5NwsA29XhY83/gWqJxh/FwyJtwyhoYcj+Eu2/zebbmyZn5eeZ3b5rSG1QikUgkkkY4Fkz7lbinAazu57Gu8KoWm1oWVFWJa3xVFfz2t+Ke6ZlnddR2Qwi170NOx66EO/bB6DiC7MKChlTihgEs/xvMvkIcLFQER0xK3wdKJHsoW9Q8qgYjnoJhj4vGqXL49lqcmhWoOX22S/P06QPvvw9DhsA558ALL6TTs25N89TVQVmZSL3vRc7V+A9h86j51HW5GhcF1aokOPccgjOPRYkuA7Ze93pfZaemsl/3Psy6BAA31I3EsNdbdUT09EzT7z2ZlHonE2lsk0gkEolkT2D1fxtugpxAFzb0n0hVogPXXw/Ll8Ozz0Kf3ha9N19AsG4aAPGO5xAY+2dycpVmKRokkr2RpikkM3/zjgNJfz8Sh3yJG+4NgLbsWQKrniJl+ls8nuuK/TZubCwiQdQ0uP56Uc/ttNOEoHQc0aalKCjHEV7Z8XjjY8Vi4r1EIu0x2CCgfO1I9X8Q96TVMOQBEZUFUL0QZl4Ab3eBOddBTckOmsE9B0/kmTUbUZb8Ef3zMagfDYQfHoOESJmDvxD2uw5O+FF4snf7f6Buv8fB1gSt54W7vRFwEolEIpHsU7iu0DNr3xbbRaeSGvJMqyvsdXXiXqmyUtSPqqiA556DLl1A1QNE3SLsUG98OUW07xggJyfj/m/lv2HmheJAgY4wfhJEerTFKCWSnc4WNY+rkOx1PalR/8JVfWBF0b69BKP8M1JWy2FxrWkenw9efhkuuABuuQXOO084Dm5J86RSsGGD+DxT71gWmE6I0q5PsWHAVKyg0GP65k8ITxmIb/F9GGpyZ0zXHs1OTWVf+qWo0+ba4MsjeeBHuP6CVpt7vxOpd7aMXHaTSCQSiWR3Z8NE+PoscB1cI5/K3k+jJ9dw7++rmDfP5cEHoV9fl24bLyWv7n8AxNudDGNeQdXkpV4iaRRt5O9B9KAvsbMGAuBf8QcKVlyGmbKbiQOfT4jDllKaRKNw0UXCy3PyZDjoIJgzp3XxkUqJz1xXiOLMvlVViWddFyIqU0AFAqAG82HgbXDyShjzF8jer/6glVDyJLy/n0gxueI1nGTtzvN83EU09ea06kqxf/wzwa/HE57YhcD3v0OrEjUGXEXHLToVDn0HTl0Hw5+A7OKfdf7WHBW8fiUS4jm5lfUB6e0pkUgkkn0W1xUZOpb/VWx3GA8H/xNUvVlTx4FYdTWp0nloFdO4+fpaVq1yeewxkWEAhH3OyyyQldXkWr3mfzD9bHAd8BcIh5vsvjt/jBLJLiZT8yQ7/pL4mE9w9RwU1yL03fnkrbsfM+Vul+ZJJOC66+Dxx+H//g8OOwwWLmzdubCuTrxuqnlqa8U5bBus/LFsHvkdtd1uw1UMFCeJv+RO1I8Hw8ZJ2zTWnRrttYtopnlaMWjCDjBsrfsAJh8Fdhy0AIx7HyV3wBb7lUiI73dL55V6RxrbJBKJRCLZrVErZsOXp4KTwtXC1HS8jPjmNVx7Sw4ff5bNn34/kePHLaFz6U0UVL8CQCzrMOLD/40/2Fy8SiT7Gi1537mBTtSMmkIqMhyA7NIXKVpzLpZpoihCcIZCIlWK4zQWit4xPQE0YQJMnCgWfA4/HN58s2UB4kXEaZo4bigk9nGc9Pm8OgjeeYPBJqlftQD0vhCOXwTjP4duZ4BS/3e+aTJMPxflfx1Qp/8Sd+27pBIpotG0IWhPrCHWEMFWsQRl8VNoU49Ae7cTgQWXo5dPRkEMxs4eSmLgU0QnrCc15i0oOqlRFNvPEeSa1nzfzMUMRRHPtbVbFpiyDoVEIpFI9lkWPQI/1Ke2yx8Jh74t7muaYJoQ37yUxOL/EF85lUuuas/sOUFeuf99Dhu1lGQyfT1VlHRkTwPrP4JpvxCRGkYujJ8IOS0vIEskexMtaR674DBqxnyF5RNW6rw1v6fz+suwTGu7Nc9pp8GHHwonwUMPhY8/bn4/bVnp91rSPKoq6sLl5IARDJEofoCqA+fhFh4qdqpdDJOOEHWX65a3OtaWor1qa4UhaE+tIdbSmDyHzC3t05Rt0jzLXoEvThb1M7UgjP0fFB60TZonkdhyZJ3UOyBX4SQSiUQi2U0JJJfin345WFFcxUd1+0uJpgp58C+H8MbHg3j02k84YsQP5K99gZzatwCIB0eQGP0OWbkBmTZSIqF1ERJ3CkgMnUS7Bcfjq55GTuU/0dwoG3q9gR70EwoJoRMM1ntgWhn7xtPGs1AI+veHzz6Dq66Cyy+HmTPh979vXsDc50t7KHp/n56oVZR0ShgP2xbitBmKAh3Hi0d8Iyx/BXfpyyjR5ShOHGP9Gxjr38DVs0kVHE0s90SS7cY1qiEWCOzmNRytOE7pNNzVHxLe9D5qdEmzJnbW/lidf4HZ+QzcSDp6ranIM83miw+p1LbNgbevqqa/80RCfDeGUR95WP9dqqr4TNNaPpasQyGRSCSSfZKlL8L8W8Xr7P3gsA/ByGrWzHEgWlmNuWIyybootzx1JBOn9+a5299jVPEKjKqNtMstJGHn4PNBu3ZNoto2TYEvTwPHBD0LDv8E8oa21Sglkl1Ka5onauxPfPh02i04DiO6gLyyFzHM9Wzo9W/0YHi7NM+IETBlClx8MZx9ttA+112Xvp/2DGqtaR7DEPfJjTRPYACpjlPwr38V5t4AyTJRd3ndu1B8NQy8HXw5jcbU9L4+815fUdI1xLxz7u60lprRccT8e3PWlO3WPFYMvrkyHWFs5MBhH0Dhwdusebx+tKZ5pN6RxjaJRCKRSHZLlOhK+q65EsWuxEWluvudJGIuz/17CM+/MZI7LpnKKYf/QDgxnZy4MLSl/P1IHvgRuYXZ0tAmkdTTkjefJ0ZdPYfqEZ+Q+92pGGUTiVS9Q9cVJxIf+T9C4XCDwPHEWjSaThloWWkDWSwm2j3yCAweDPffDwsWiBST3bqJduEwbN6cThUJjQVoICCOaxjp91rzDPS8DIWg7YjR/zbM3rdilc7CWPdP9HX/Rk2Volg1+De+iX/jm7goBH2D0fRjUDuMJ5F/IFpO1jb/r/DOaVlCdGmaGEtmf38WZh2Uz4TSqWKxrHwmqpPC16SZnT2MZMFJ1LU7EzVvQDMPXGgs8rZWV6A18dp0X29xwBOirisWJTxPXW9uUqlWDKTsGWJfIpFIJJIdyuo3YdZl4nWoKxz+KQQKW2xaU5kgVTYfu3YTD7w4gX9/tD9PXP8xh49ageOAYkXJ962gWh1K+/YiOqbhGl7+DUw9qT5SIyQWkAtGt80YJZLdgC1pHidQRPWoL8ldcCp6+WQi1e/Tfel4YqPeIxhuv12ax3VF7cQ//xmefBLmzYM//Qk6dEhrl6qq1jWP914jzYMCvc6DLifC9/fC4j+Bk4IfHsNd9lfM/e7E7XUJRsDfzKjY9F4/8/Ot3eu3NIeexspEVXeg5mmB1qLEvPOZZvOoQ9hOzVM2BXXO5VDzo3gz0ktEtOUN3ibNo6rp34Ond1rqt9Q70tgmkUgkEsnuR3wD/q9PRLXLANiYfwuu05HX/hvkwZcP56ozP+GKM79Hjy2gIP4mAI6vPdahE8ktbFm8SiT7Ki2JokwBpehhEqPfg29/ibHxbQKVE/F9ewzq4e/j+HOwLGEIy/TUdF3x2vtz27BBeHuqKvzylzBggPD0PPpoeOUVGDdOiJWcHGGo8gRtTY1Id1JQIFKqpFKNvQ9b8gxszWPRdRWUvDEk88aQHPAEWvlklHXvYJS+h55cjYJLTmo+rJwPKx/BVTTc3OFQOAZyh0DeEMjZH/Rgq+dsem6vn9sVJee6wmO1pgQq50LFN+JR/QPQ3LroamGsgiOxO5yA1eE43EBnUZQ9CkYrxsjMvmytbkBr4rWlfT0vXO+3YNtiOJlzoqpigaLpfGRGwEkkEolEsk+wYSJ8/WvAFbXTxk+EcNcWm8arytm8fDXZLOGZvw/iz/83hrsveotfHbsC09ZAEQvAQV8dWR2FE1MD1T/AlGPAqhUppMe+Be3HtskQJZLdha1pHnw5xMd8RGD++Rjr/oWvdhb6zINQx3+ME+6z3Zrnkktg0CAR2Xb00fDqqzB8uLgPbk3zdOuWTjXZoubx58OIp6DvFTjf3oS6/h2UVBm+767CWfwoqb53kOp6PoqWdsdrer/eUrRXa/f6Tdt59/SZr70+bmtWjJ9CaykvvfO25oC5LZpHiS7FX3I36rp/pN/sehqMeaUhYnBrmsczumV+HouJ58zoNql3BNLYJpFIJBLJ7kSqEiYfjRoVOco35lzOencCsybr3PbCQZx91FSuOf09tOr1FCTeRcHFUcOYw54n0K7bLu68RLL74YmUTDJFgKZB0vITH/AfsvkNgY3/RC3/CiYdgXrYxwQCBYAQnIGAEBqeyNR14bkJQlB6xz3gAPjoI7j6ajjlFCFCb7lF7FdTA5WV6Vz4IAROXZ1YODKMtBdmUzG3JY/FVCrD41LVsQsnEI9MwOr1LHp0Ib7Nb8GGd8mxFqI4CRTXRqmcDZWz0wdRVMjqC+FeEOkB4R44oR6YbgfQ80iZeShGPq4aAkVp6GciAZrqorpxsOrEI1kO8fX1jw0QWyMMbDUlkKpo/QtT/VBwALQ/jFT+YSQjBzSr6aKq6cWApjQVeV6bxtGA6bnaUl2B1oSvd3zbbv7b0vXMKEUFn098r1J4SiQSiWSfomxmfd1pL6Xjx5Bd3GJTFY3SpYuJRTX+N2kQj/xjNFee9iHnHTUJs85Ay+qBqriiPls4gi/TLyi6CiYfJe47FBUO+id0PrptxiiR7EZss+bZ73UiRldCKx9FjS6DTw9CHfc+gRwRCbo9mueII4TmueIKOOYYkUb/ssvS0U+ZmicQEHXVYBs0T6Qf0RFvo3WfjH/RjWjVc1ATawksuAxjyUMk+96B3fUc0PzN7tebOituSw2xTI3VVG9lRsdtb6TcttLa8X6O5lGrviG05ln8G/+B4triQ387GPoo9Dq/0URtSfN4x8s0WOq6+G24rpgPvz/9nUqksU0ikUgkkt0HKwpTToCqBQCsCvyG9eZJzJqfxw33D+LEsfO5+4L/w7A3UmC9h4KNo/iJd78aX6cj5GKuRNICnkjJFE2eGNU0IQDr36Wi+FVylAjhDS9CxRz4fBzG+M/Qwp2wbaFJFEXsb9vCcOaJE0/IeUIkJwf+9jf461/hgQfgyy/hpZcgNzftKep5AnrRUZ53YOZzJluK0jIM8bn37Akj11WwIvtjZ/ViiX0ixX17kJVahFb+JXrVl2hV30JiY31HnLRBzJs/IFT/2quu4qKAoolPFU1Mih2npci0rZLVD/JHQP5IaDcS2o1uMK7pDiSjrY/Xqy3huunvpemcqeqW6xf4MvJUNjXItYb3+/HS6jTF7/c8gV38fmlok0gkEsk+RtVCmHKs0DaqH8a9K671LRCNQu3mBImEyefTOnLnEwM497hpXPuLD8W9l2mi2HFcLYAWCKNl90xfVxOlMGkCxNaK7VEvQLf/1zZjlEh2M7Zd86hU9XiElN6VnKVXoSQ3w+eHYRzyH7ROJ2y35mnfHv7zH3j2WbjrLlHT7bnnxD22Z3zx+9ORbtujeeyCw4mNnY2+6V18JXeh1cxHS6witOBi7MV3Ei+6EqvDZTh6fsMxmhp8tqWGWKbGaklvZRqbmuqtHZFisiVDaeZn26p57OqVKOveInvTP/DVfdvwmavoOD0uRBv+APjbCc2T2jbNU1fX8hyqqjCwOQ7ouiP1TgbS2CaRSCQSye6AnYIvT4eyrwEoz/k1G91TWPQd3PLQ/gwfWMkDt68mEI3RMf4+KhYuGtEuvyXY/3z0UM5WTiCR7Ltk5p73RIrPJ7wtG6FoJAf/GSOYhW/5E1C9CCaORT3ic4LB7o3SZHiCNplMHy8UEkKork4YYjRNpFgZPRouvxzGjoUHH4QJE0S7zP55Bae9+m4t1f1qzevQ64+XwtDDE8eRiBfFpYDqx84/GDv/YIzwLcKaliiFyvlQNV+kYoqurH+sBtdqdi4FN/3+ttjXjFwIdRaGtexiyCoWzzkDGxU8b2lMTRcNPAIBMUet1Ufz8CLvWiKREOk7oWWDnOOki4K31K9Uqvl3kullui2etBKJRCKR7FXUrRSRZqlKEWl2yBvQ4bAWm1aVJ1izeAN+s5SZcyLc81R/xh9Uyq3XbkaNhiEVRVFBUy182WGCPQ5Pa55UNUw+GmqXiO2hj0Kfi9pkiBLJ7so2ax7A6XMlidzOBOb+GsWOwxcno456nmDXS36S5rnhBjjoILjySjj0UHjsMTjwQHGv7LqNaz1vl+ZRFKyOJ2N1OBF9w/8wSu5Cr1uIltxAZNnthFY8QHX+b6ju+DuMdvthWfWaJ2NOtkZmVFgiIe7xvYi+ppkwvLT/mfzcFJM/WfNYMbF+tHESvg2f4K/8ttHHjhok3uFc6rrfSrtu3UHffs1jGC1rGk/zZGpaiUAa2yQSiUQi2dU4Nkw/BzZ8AkB1cAJzq89ixUqb6x8YR3G3TTxw7beUbYzTz/cOGklcFOp6341v/9+hh6WhTSLZGl7ueY9kUgi8TDEqBKBCcsBjqP4s9B/uhrplMPEQjMM+J6X1a3RMXRfHUBQhOkGITi89pBfBNmQIvP++SK1y5ZVw5plCkHpC1hOehiH28QRoSySTLXtROo54eGPyDEGRiHitKBCPKw3emo1SjwTaQ6cJ4pGJYxEt30C0ogwnUYkTr0CzK1HsOgzdRlMdNFU8W0oI3R/B1cK4egSMPJxAZ1x/J8I5oZ/s7djSokHTcW/Js9S2tyxevVQ4LX3uCUjLSnvjeufIyhLvR6Ote5luiyetRCKRSCR7DfFNItIsvl5sj3kZik5usWnlxjJWzC+horyWRT/6uPnRQxg9cBX3Xr2AdZtz6dD+KHICpRhKDKOgL6EuQ9Kax4rB1BOhcp7YHnALDLhx549PItkD2HbNA1an0zDDn+GbfpJI8z7rUnw1S0n1eag+i4VgWzXPgQfChx/CjTfCb34DF1wgtI/Hz9M8KqmOp1MZOZVwzUeEVz+BXj4Z1YmRV/YceWXPkcw+iOp2Z5OKDcU0t72GWGYmDMsSDxAayu9PZ8JoKaWix89NMblVzWO7mNWrUMpnoVbNRquaiVI+Exxh+cucxlTWKGIdziXe4WxcI/dnaR6v/l5r/ZJ6pznS2CaRSCQSya7EdeGbK2D1fwCIhQ5ibvwmVq0xuPmR0bTPr+P+K94hx61goPEchlMOwOaCm4kMuAF/OLClo0skklbwRESLBbMVBav/XeiBCMy9AWJrUSeNJTB2IonA4IZmXsoPT4QkEmnRCemIMhDpI//4RyFC77kHZs8WqVZGjWosVjzB0tSz0DOgZXpSZnpReilNPGGUSqWFoa57NcTEv5xgcOsRYQAOOpavK1ZWV5ywKISdSSgkjE7x+nO7rYjLbS1M3hqtfU+tpYfMFMTJpBCurS0yuO6W03N658lcDPCO6217iwVN0TQZ2iaRSCSSfYRUNUw5BuqWiu1hT0Cv37TYNFabYO2iEqorTUqWRbjt8dH07baZuy56H6IQzimmrs6H43QinGWQ3WlEWvM4Jnx1Bmz+Umz3uQSGPLjzxyeR7KFsUfMATruDYcI0kfo1uhLlx8cIV/9IdOg/RL1Ftk/zFBaKVPovvgiPPgrTpwvNM2jQz9c8joOImO18PPGi46FyLtqSJwmW/gvFtfDXfE37mq85XAlh/ng8mv1L6HIs6EG2RGYmDF1vfO5ksnEmjC1Fr+0wzeM6ULcCSudD5Xc45d9A+Sz8qc0t7ueqAay8g7E6nIDZ8TRSejdcF4wdoHkURcyBqraseWSdtuZIY5tEIpFIJLuS+bfB0hcBMHNGs0T7PeUbQ9zxxFAMw+LRO+aRb8Tprz9PCOElWpZ/BeER1xPKkoY2ieSnsjWvQ0UB+l8PRhbMugwSpRhTD0Mb9zFm9ugGo01mOsF4XIgQLy1KZj0wXRfi6YILYORIEdl2wQVw8cXC49PnS6dXyfTC9Aw7tbVpkZMpAD0vSu+80FxIeQY4w3Dw+YRI3hZjm3ccRUmnU7GsdN88783Mc7fEzkin2LR4eWafa2vF/Hv99QS635/2SPVEo6633j/vHIbRuE5DNCqO6xWPTySE4TFTbAYCoCjS2CaRSCSSfYCmkWYDb4P+17XY1HGgalMZsTqTDaUBfv/EUNrl1vHgbd8TdHVsK0lArcb1FRKKGHTsW5zWPK4D08+D9R+K7W5nwsjnZGiFRLIFtknz5OwHR8+EL06Fsq9RN7xHJHYwqQPfxQ31+Ema56qrYMwYoXnOOUdsX3BBOiXiT9E8XrpFb59kaBip/q9S0/sxghtfI7zpZfToj+huDL30TSh9E/QwdDoGOh0NHSdApEezObBtcb66urRx0tM8Xr05Xd9JmsesharvRTp/L61/1QKw6hqaNP0KXT0HK2cUiciBKJ2OwM0/gKTlF5rHB35jx2oeTUvPQabmCQS2bsDbF5HGNolEIpFIdhWLHoNFDwNg5wxlY7cXKF1Qx40PDsY0VW674lMMVWFA4O9EWAdAae5viRz8uDS0SSQ/ky0VovY+B4THtBaGGedBqhJ18hH4x70PHcY1amuaQmxqWjq/f1N0XXhGDh8O774riof/4Q+ikPgzz4g6B6FQel8vciuZTKczgbSgzazFoKrp8bRU2y1TGG6rEEwmhcjyjidqIIjxhkJCYGWmrWyNLYnSraWBbI2WhF2mAc7zLPW+50RCfN60n17Kli2dI9O7s7a2sSev910kk2I+NE0cs7U6cRKJRCKR7FU4Jnx1Zkak2aUw+P5Wm8fjUFudZP0mHzc8MIRgwOamSyZhWxHM7IGEfHX4c7MxcnvQuVdBhqHNhW9+B6v+JbY7HQMHvgZqKxdxiUQCbIfmCbSHIybBrEtgxaso1QvwTx4Nh/4PCg9uaLs9mufgg+Hjj4XeefJJmDQJnn4ahg37aZpH1xvftzfUWvN1INrtBsze16NWTCbx45/pYE5FS5WCFYU1/xUPgEgfaH8otBstHrn7k0waDY6FXvpKL2Wmpyd+luZxXZzYBqyKEqj5ETVaglb3I0ptiaiTvQVcNYCTPRg7d7R45I3GDvYlGlMb5siviSi2naV5PKdQyxLHDwbFvHjpNyWNkcY2iUQikUh2BUv/AvNuAsAJ92NZ10+o2Gxy3b09Kavwc//1M8jPqmZM8Dly+Q6A0tBZ2EOfJZQlvTclkp/L1gpRNxKOPX8tvCKn/UJ4GU45Bg75L3Q5ruFYfj/kZiWImmVgJ8H1Y2kF2IhFIo0EAacMI5Ek1+cn1K6AW28NcMIJcMUVcPzxcOedcMst4niZhqOmxrNUKh25Bem0iJ6oak30emyLA3gqBeXlQmjZthifdwzTFGLNm6dtFvEZOI5ISxmLNTaybWuB8ZYMiplizzMoet9zLCa8VTM9b5sW9m46b945vL4kk40NbZnn8BYBfk7qGIlEIpFI9ihcB2acD+s/ENvdzoSRf2r1RqOuDtasgfUbAlx372BSKZUHbpxJyJfEZ0SwTYeYGyJg9KBHnyJC4Yydv7sTljwnXhceDGP/DzRfi+eRSCRptkvzaH444G+QMwDm3QrJzfD5eBj9EvQ6d6uaRyOBbpcRMJMYpp/crAKCwQD33w8nnSQ0z1FHwcMPw+9+J065PZrHi7DKHFsmhk8hkXsAS/Py0Pq9TJ41F9/GN2H9R6ION4hUt3VLYfkrALiqn0CgH47ej4TRDz3UG9ffEcvoQMrqSLAgh4AviKrqjTWP64Jrg1WLYlagmBUYagWkSiG2BqJrILYaN7oaoqtQrVq2+h8rVAS5QyBvCOQOhtwhJIy+WHZjK5nZih7ZmZrHizZsbe4laaSxTSKRSCSStmb1/8HsSwFwAl1Y2fnvxGpqueH2Tixb5efe6+bRqbCWYb6XaK/OAqBcP4zq4hfp2V4a2iSSHcXWClE3ouspMO49+OIUsOPwxckw5mXoda74PFGGr66EVMJsEGG6tgotUgyAL1WCoZigilQgAWUVvkgxo0YV8OWXQnTecw+89ZaocTA4XRquxf5k1gRQlMZCuqnxq2mKj60ZsmIxKC0V3ufV1eK9ujpRpyEQSG/n5qb7t80ivr7vsZiImvPINLJtS4HxzM+86LhYTLzW9cbrfF4Rdu910+/Zq03QNOKvaaqapgbFpmuJqZTw9JRIJBKJZK/HdWHONbDyH2K741GtRpo5DtRWJ9i0uoxoZYrrb+1MZbXG/TfMJT87QU1tOjI8EDbo3LOAcKah7Yc/wML6aLncITDufeEEJZFItont0jyKAgNuhuz94Otfi8iwGedBzSJRHzFZ0aLm8Yc7YEc3YWgmhg7UgqqsIphdjD+rgEMPhRkzRP22a66B//wHXngB+vZNn3prmqdpBolMzdNMcygaeudDoehQsV23AjZOhI2fQ/lMiK4SzZwkvtgCfCwQ7cpbmUTVQFX9RFwbHAvF3baQrpZWbxx/J5xIMU5kP/T8/VDzh0DuIPC3a37aJFBvJJOaZ89AGtskEolEImlLNkyEr88C18E18tnU6RGqyxPc+nAWs74J8PwDsxkxOErWphfpbUwDoMYYReV+r9Opa3ib6ixJJJJtZ0sFw5vR6Sg4/FOYegKY1UJ4JjZAv6ugpgQVU6RE0cC2wHVN1PgCNL8fv99sJAAt0yS1uQQnN4KqBrjtNjjmGCE+x4yByy6D228XKVhaihzLFEme8SxTSHtpUDyB5RnbWjJ+ZWJZUFUlBJzjiLnxPBurq9N1FprWftuSiM9MFQliLC2lHMk0sm2twLg3J17aGUinTPEMd03x6ix4/ckUn96YMvsfDAqDY1Mcp3HtOm+MnlCVhcIlEolEstfz/X2w+Fnxut0BcOhbLUaamSYka8qoWVVCzQaLq+4axJJlOi89NJM+fVKsXw96XMEwICfXoEO/Ygo6ZFzEl70Cc68XryN94PBPwJe788cnkexlbJfmASg6GSZMg6knQWw1LHpE1BLr+ztUPdBI8+BE0SomY+QU48804rkmVmUJiVAEVw3g88FDD8EJJ8DVV4t0ktdeK+q6BYPbpnlUtbHm8KLdmuqbZpon0lOUB+hzCQBW3Saql89GqZqLWleCHl9MIFWC7ta0PB+OCY7ZovGsKa7qww12wwl0xfJ3wzS6YQX7YoX2wwr1w9VzGiL2XJ/UPHsbcslOIpFIJJK2omyGiIpxTFwtQnm3Rymt7sL9T/dj4peFPHr7QgYWx+mYfJ2OxjsA1PmGUDP8Q7p0KpDeQxLJ7kD7Q2DClzD5WIivg3m3QE0J9Pi18KDUIaSCZQMuKGYZmhIGNUTKFBmXHBcScQAT1VcGoSJUVdRymzQJXnlFpJR85x147DEhSJtGjnkehk2FpCek/f50bQHXFaIqFHJbFUWeGKuqalz7zauN4Im8WAzy81sust2SiM8UhiAMd6lUWtw17UNdnRBujrPl+m1eKpPa2vR7ui6O7feL58z9bbu5EM+MpvOiA5v2P3PefT5hcPTqs3mpMBMJsV8olBa+LaW5lEgkEolkr+DHp2DBXeJ1zv5w2ActRpo5DsRqE8TXl1BWanLrwwP45rtc/nj/d/TqYeLXoX2P3iibImQXdaJLny7ktQukr9Vr3oJZF4vXwc4wfiIEO7TJECUSCSKd4dGz4MtToWw6rP8QKufD4PvQIz0bNI+SrAYriqbVtaB5THDLsH1FDffmBx8M06bBn/4EDz4Ib74JTz0F48dvm+Zpes/u6Zjt0jzRDsSzT8CJnEBdXX1tasfFTtagJDaRZWwkL7iJoF5L0BfDUOJgJ4SFUTFArX/oEfDlY2n5JN18XF87XF8ByZQqNc8+ijS2SSQSiUTSFlR9jzvlOBQ7hqv4Wdv1ZWrj7XnypZ689XFnbr78Rw47oIwO5tt0jP5V7OL2YXP/9+jdo0DmxJZIdidyB8FRX8PkY6DmB1j+V6hbDgNuA80nRJH3N2ulsGyDlBUSm5YQK56XoRJLEo0Lj8JQSIinK6+E004TdQ1+/Ws4+mghRHv3TgvJcDhdmLo1MoWUKPTtttgu0yDmGcMcJ53X37ZFvxVFPCxLtMksYN4SmTUYMt/zzplZVN0ruJ0pAqPRrXtNZhoUFUW094yFXnScJ2KbGgchHU3X2jkyI/a8mmxe9F3m+LxIvszjuq5M+yuRSCSSvYylf4FvrxWvwz1FpJk/v1ETbzF782aIlZdhVpjc82Q/Jk0r5N7rFzJi/6r69GcKgZBKnVJIpLATBe0zDG0bP4NpvxIr9r58YWiL9GjToUokEoSB+4hJ8M3vYNlfhLPh7CtgwI2oHcYLzWOmQAfLTrWoeXxGkni9vvA0j98valWfeSZceimccorQP/fdB1267CLN4ygknRzw5aCG+qFmgRkCNReMSOvndxyIR5u/551Tap59C7l0J5FIJBLJzqZuOe6ko1BSlbhoLMp/g0p3BC++1pW//193Lv31Uo4Zt5Fw7ed0iT4DQErvzFe+F8ht304a2iSS3ZFwN5jwFRQeLLZLp8K8m8Csa9TMUXxYjkir5LhpUWfZUFMDKcuPZQlvxdratIjq2VNEtr32GixaBAccIARpdbVILRkM7pjC1E0NYlp9qRVVFULKthsXyM7M6W/bW/ZmbClVZGYKE89Yl9kH100b8pLJdE2C1vruietAoHFEn8+XTpPi86XbtMS21Ifz+8V85OdDJCKO6b0fColzZhZsB7BtKTwlEolEshex8l8wS6RgI9gFjvgcQp0bNTFNcT+zeTMsXw6JuiSPPd+Ldz7tzHUXl3DwyDJiMXG913UIGgn8fov8/IxrcdnM+mwgKRE1cthHkDOgTYcqkUgy0AIw5iUY+oiI6nISIpXskufBsUH1CX3Tmuap85NI0KLm6d8fPvsM/vxnEe02YgTce68wQEnNk95Pap49B7l8J5FIJBLJziS+AffzCSiJDQAsb/8Ka9yT+ffbeTz9Sm9+c8YqzjltLTn2TPrZD6HgYql5rCp6lUCeTB0pkezW+PPh8InQ5USxXTUfvr0aEpsbmlh6Aa6RC9TXNKjHTIGqG8SdgnRby/MOFNs+H5x+ukgtec018Oqrop7b8883jxjbGiLnvko8LgRdprdlJqFQ+rUn2Pz+9Ou8PCHoPPHZkrjMPGdTPE9ILyUKpNOQ1NaKlCrevqmUENqxWAsHtxNoqbVo8WVoqbUoTnpCPNHseWJ64zWMtCj1CoiHw2xzLUzvGFlZQnwGg5CTlaBdcC0RlqGbjfvRklepRCKRSCR7JGvfhennAC74C2H8Z6IGUgaOI67l1dWwfr24fr/wagF/f7MbV1+wlFOO3ohli+ujZQEKOGqA3Fw7rXmqvocpx4IVBdUHh74DBaPberQSiaQliq+CkX8Ef71+Wf0fmHcj4GIrYVxNhH9lah7bMUgqBY0yYrSkec49F6ZOhQsvFOklDzxQaJ9MA9i2IDXPjtc8kVCCdqG1FPiXEVEb9wGk5mmKNLZJJBKJRLKzSJTBpAko0eUArGn/FIvNc/n8c3jkD3mceswGLv7VCvLVBQzmLlRsbCVMWbcnCHYdQXa2JaPaJJLdHT0IY/8HPX8jtuuWw5zfQd0KUAycrEG44X6gGo2EmKobOJFiklba9bCpUEkmobJSiLwrrhBen+PGiULiI0bA//63beLGNIWASybTKSCjUfF+U3Go65CT03g7O1sItI4dheAKh9MCsun5PaEXj7d8fM9LFNIemKYpPCQ1TWx79eE84vEmx0mUQfkc9NhSiK6BmqWoVXPQzLJG4/UW8ywrPd5Mr1DDSKeTyRTjrdG0TkSWr4xgbA5K3VLcOtGP5XMX8u/XarnjDoNvv91CvhmJRCKRSPYUNn4GX50Brg1GLoz/FHL2a9YsmRRR+5s3Q3k5vP02PPdiDr85cw2/OHEtPh9kRcT11zAgK9sgp0O7tOapWwGTj4JUJSgqHPwGdBzf1qOVSCStoQWg62kw+hXIHSLeq5wLs6/A1UO4iHAx755aqdc7KSvQSDO0pnnCYbjhBvjkExgyBC65BA46SGxLzbNrNE9ILSOcqO9DbA1ufR+WfF/Jq6/CbbcZLFoU2vIB9zFkzTaJRCKRSHYGqWqYfDRULwRgVfZdzItezTffwJNPwpgxChdfZhC0V9E3cRsaSRx8VPV8lNz+J2JpPjaVShchiWSPQNXggFcg3B2+vwcSm2DO1XDQP1ByCrBToORGUH1lOKkkiuXHDRVQFw00eDpCOv++oqS9w00z7dHZrh089BD86lfwzDOirsGoUXD//TBhQvPi29By3TSPRKJlD8dQSAhAL52JqqbryTUl85yZdRBACL+WahB4NQF0XZwjUr/wlunxmkymU50oSroWAXYCakrANRs8RVMpwDGhtgQ3J0IiEWhURN0wRBuvVoHnner11fs8s3h4S3jtABQngVO9mG/mBpg1twMzv81h1rwcNpeLL7RPH5u+fbWWDySRSCQSyZ7C5mkw9eT6lI5hOPwjyBvaYtOKClizRjxPmQIvvijuT37x6yCOY2D4THHf40J+gUFut+K05klsgK+OgrjIBsKYV6DrKW00SIlEss0ECqDzBMjbH76/H5a/AqlyjNnn4va9DbvnRag+C8fxY9kFWLEAmI01w9Y0T6dO8PTTMGuWeD7mGOFw+MADcPDBLXdLap4dr3kUJwG1JZimzYxvc5g1N5tZc4XmqawyUFWXvn01RoyQHuKZ7PHGtlWrVvHyyy8zf/58lixZQq9evXj//fe3up/rurz00kv885//pKKigv79+3PrrbcydOjQnd9piUQikezdWFGYchxUfgvAqtD1TKu5i8WL4dFHRV7yiy4CM1pNf+UWdLcOF42qfi+QM+iX6P4AsRZzCEgkkt0WRYHBd0OkB8y8GKxa+PJUjBF/JNXpMlw1AKEiki6kXOEc7gk8RRGPnBwhxjyh5eXwb8rgwSKtyqJFooj40UcLAfr738P48c3FoJeexDTVBnG1tahZz7szGBRelq2haWnv0Xg8ncoE0h6dmYLPIxSqL5LuSxCkjJpokqTlJ+kWYLmBhvoGui7aef8SDbMM1U27gHoFxy0bcE1cq4xwuKjhXI6TrgnhFSj3+9Ois+lctNRXD0WBxYuFd+3kz2Ha12OIJzSCAZsRg2s5/5cbOGBENWOG15DduRMlq6uAjlueaIlEIpFIdlcqvhWaxo6B6odD34WCA1psWlUFP/4ImzbBvHnw7LMwciScdRZU1BXgZEXIyi4jHEniC/opKCpo0DyaXUPg6/NEdgCA4U9Br/PaapQSiWR70QIijewBL4t0+jPORzGr8C+5H6tiGtbQf5C0O2Hb4t77p2qe0aPhP/+BOXOE5jnkEDj2WKF5DjywcVupeXac5nFdWLgQPv0wyaTPBjBjTg7JlEo4ZDFqaA2Xn7uOA0dWM2psAYG8PJYurQG6bHmi9yH2eGPbkiVLmDp1KkOGDMFxHNxtTBT60ksv8cwzz3DDDTdQXFzMP/7xDy644ALeeecdunbtupN7LZFIJJK9FjshvD/LvgZgU/ZlzDUfo6RE4fHHoWtXuPJKUJMbONx/FAE2ArCx59/I2u9sdP+u7LxEIvnZ9PqNiHD74jQwq1C/uZxQ38XEih9DVTUCgbQQzPScDATSrw1DiLmmxaczcV0hOL/+Gj74AO68E448UkS63XILnHKKEE/JpPC09NKUeOlUPG9Gz7O0JU9Qr08tfe444lFRka4T4KVrCQSEePNEr66L/nrn88RporoMtaoEK2Xi1oEZBV1fhRoppi5WgOMID1DLEu1TKbDjSXxWY49TVQVfvVB0SeLUvzZNIVgtK50uJZlM107IFMmZNHiUAmvXwsSJIoXnZ59BaakY38EHONx21UoOGVPFqKF1GD4XXEABXYOUsp1F9SQSiUQi2Z2oXiRSOpo1oOgw9r+tpnSsqYGSEhGdMn8+PPWUcC685BJxHTYMiCYCxCgi4IN2HUhrHitKn7XXoCZENhD2vxP2u7pNhiiRSHYAXU+B/GHw1S+hfAZ6+WQiXw6Bwa9TEzrqZ2segKOOEhk93nwT7r5bpJY89FC49VbhdKgoUvP8XM2zfLnQOhMninrhFRUQiWQxdnQFd9+wnLFjqhg+OIqmZ2ierAiJVqLj9mX2eGPb+PHjOfLIIwG45ZZb+P7777e6TzKZ5IUXXuCCCy7gN7/5DQAjRozgmGOO4eWXX+buu+/eiT2WSCQSyV6LY8KXZ8CmzwGozD2HeeqfWPKDwlNPQX6+iGiz45WcXHgUWYrw3tzY5Wlyh56dLgwukUj2bDocDkfPgCnHQ90ytCVPEoktIzXyHxihCMGg8KBMJtP5/z1xlJUlxJCqCvHWGoqS9gg94QQ4/nj49FN4+GE4/XQoLoZrroEjjhDHSSTAsrSGVCXeuTwh6AlF102/B+m8/p7QU5R0XzO9P730LLouCn57Y8jsb2bdA+wEal0Jlm2SSqXrGFiWiVJXgi8UIR4XaTYdRwjBZBI0y48VVwn769DcFGg+0COAUJaKIRSj44jFv7q6dFoYzyM0mRSCtiXRWVMD06eLAu2ffSa89BVF1Mi74AI4/HAYNgzCagXUrGnYT1VAzxSbagCQBjeJRCKR7IHULoNJR0KyXNROO+gf0OX4FpumUrBypYhs+/57EdHWvTuce64wvrVrJ67x2dkimqVrV9Kax07hn3UWWuI7sd3vShh0dxsMUCKR7FDC3WHCFzD/DvjhUdTUZrK+OYZgn+uJ972PZEbNtp+qeVQVfvELOOMMePddkVr/2GNFbbdrroGxY0VbqXm2TfNUVMC0afDFF8LAtny5mJvRo4Vz+GGHwbD91uNLLG3Yx3WbaB5Deoq3xB5vbFO3Fg/aAt9++y11dXUce+yxDe/5fD4mTJjAxIkTd2T3JBKJRLKv4Njw9dmwXqQyjrY7je/8r7DiR5XHHhM3TZdcAvnZUU6KHE+eIpxDSjvcSdbIq6ShTSLZg/HSdngCxzBAzS6Go2bAl6fA5mko697FHzsUxr0HoS4Eg0IA1dY2FnupVPoYXvqPltKqRCKNhamiCM/Oo4+GGTOEAL3iCiEuTzoJjjpKwbY12rVrLGyzssT+XhFtj6a1CDx8PtHfljxQa2rSAjIYpCGKzxOq1dWQm1svYpNl6KpJ3ErPoVv/7FgmNmVEzaKGPpaXi+NFVAW3poS4EyUYrJ8D1Q9ZfUELoocKSCaE4KyoaNy/VEqM0asJEQyK13PmCA/OyZPhm2/E2Hr2FHVm7r1XpOZs1070LRr1+luAqq4SThakvzdVBRQD19cOqNrKL0cikUgkkt2M2FphaPNqp43+C3Q/s8WmpgkbNkBlpXBOeewxcb288EKx2Azi2pmTA126QLduGYY2x4bpZ6OVfgaAVfQL9BFPt1yAViKR7Ba0qHm8ZXnVgGGPQPtxMONclGQ5xtLHMTZ/TGrk69RoQ3aI5lFVkcHj5JOFc9xDD8H55wvH5lNPhSOPVEgkpOZpqnmSSZg5U+idyZNh7lwxvuJiYbScMEEY2HJy0ppHcQogldY73rFVFVTNAH8BJJ0t/WT2SfZ4Y9tPYflyEUnQq1evRu/37t2bv//97yQSCQKBwK7omkQikUj2RFwHZl0Eq/8DQLLdsSxt/y82L9N58EFxg3bjjZAdSXFM+P/RUZ8OwMbs36IPvlsa2iSSPZiWBFpD0elAAYz/HGZeCCv/AZVz4ZNRMPYtnPwDGoRQUxIJsUiVlSWOpWmAk0C3ylDcJIGQH80oQNMCDV6YmYJ39Gh4/XWR0unll+Hf/4bXXw/Sv383TjxR45hjhJDyPCgzfdccJ20EbCaiEe8bRjpFiTcHXrFtz1PU+9wrAK7r4vOqKnFuwxZq2nXF+bxxKj6IxcGvJ/Gr6boDqgp2KoGdWonmaw/J1ZimjaKAShLqVkCXE1CNAL76QutNCQTEedatE56c06fDV1+Jtrm5ou7dE0+IKME+fZrvn0ySMd8BApFi1LqSBgFq2eDTDMguxnV8W/zdSCQSiUSy2xFbD58dDtGVYnvEM9D7/BabWpYwslVWiuvqAw+Ie5drrhH3NooiFngjEXHd79Ahw9DmujD7clj9JgBV4bH4hr+Army/M71EImkbtqh5MrM7dDkOjp0PMy6AjZ9C9fcYk0aRtd99pHrfAEracvZzNc+hh4rsEwsWwEsvwRtvwCuvBNh//yJOPlnjyCPFsfdVzbNqldA606eL0gOxGBQUCM1z4YVw3HHQo0fz/dOaJ4AvUIweL2lUP85yDHx5xaJ2H7HWfjL7LPuksa2mpgafz4e/yepGdnY2rutSXV39k41trusSi+0+P7R4faxrfEtVHiU7DDnfbYuc77ZFzncruC7GdzdgrPgbAPGsQ1lc+BqbNlvcfrtGZaXKbbclKCywGKtfQDfjYwDWaGcQ7f0wnXzxFj2p5Hy3PXLO25a9Yb4zI52aEosJ8aiqwJAX0AM98P34AMQ34H42jviAp4h1OK/1Y5sp/JSTpSQw7RRWrAozkURVIBkDX8CgJtIPU23X0BfLSotd14XCQiGkzjwTPv3U5r//1Xj0UT/PPONy6KE2p59uMWGCQ36+2M/L9+/VO/DStgSD6eMmEmmnc8+z1bv1dd20CLdtIf5CISH4PE9V0xSfhQCzOoGZUVfBdUW2KkMH1wd2NEYsJtobBujaBmKxWlKGH7+/Jz6lGocUuubDNXJwEzEcYg01ChxHHLO8HObO1Zg5U2PmTJWNG1UMw2XUKIcrr7Q59FCHwYMdNC29YND0dt40hWj2hDRANSFCgYH4KUexE1h6ADvUDtfx7ba/71AotEOOIzXPvo2c77ZFznfbss/Od2Ijga+ORa0TKcNSA+7G6nph8wsi4ppeUSGu82vXws03B7BtuOWWJNnZbkOabNcV9xE5OeLa6t0jGAt/j7HsJQDMvANZXvAQ3ZMWqLvPdWVvZZ/9fe9C9oY532bN00AejHkLfcWLGN/fjuLE8f9wC8r6d6kZ8AJ2KB38siM0T5cu8NvfwtlnwwcfOLz9ts799/t58kmXww+3Oe00i/HjHXJz03Xi6uq8lJPptIt+/56teUpLFebMUes1j0Z5uYLf73LAAQ7XX28zbpzNgAEuqro9mieEoQ4kqJajKwlcLYAaaIfl+CAW221/3ztK8/wUFNf1sqbu+Xg1295///0ttnv++ed57rnnWLBgQaP3P/74Y66++mq++OILOnTosN3nX7BgAalUarv3k0gkEskeiuvSpeyPdKz4OwBV2iC+Dr5IZW02Dz3UjWXLgvz2t+vIy0twXOE9DIv8E4CVqUP5sf0z5Oa7GMZWqgFLJJLdFstSW0x34uH3g66n3SFzaz+jx4Z70FwhRtaFz2R57vW4SuPK0oWROJHkd6h2Daruw4ltJJ70YYd7E41aqKorPElDPhLh/YklVBKJdNolTVOwbRdNU6msVOs9LxWSSYXSUoPZs7OZPj2HjRv9ZGdbHHhgNePHVzNoUB2K4pJKqY2MSoGASzjsoCgulqXWL565xOMKlqWSefurqhqplIuuK1iWSyjkomkOtq3gOJ7hzsFvuGSlvsMyU8Si6fNZloru81OjD6K8SsPnE3OoaQ4dI6UosVVomoPPDwquqL1QP8dapAdVdgErVwaYNSubOXPC/PBDmA0bhINdt25xBg+OMmJELePG1ZKVZWHbSkNKG01zUZS0NHJdBdsWj0RCwXUVTLO5dAoGxX5Nv+/dkREjRvzsY0jNI5FIJHsXulVBvzWXEUyJLFDr213ChoJLWmxrWd69hUpFhc699/agtNTgqqvWEgqZGAbYtoKqQjjs0ru3SV5eqkHzdCj/G0VlfwQg6t+PxV3/jKNF2magEonkJ7G9micTtW41vUt/T7a5EABbCbAy+3LWRX5FYZa50zTPhg0+Zs3KYcaMbDZv9pGfb3LQQdWMG1dD3751+P2NNU8g4KKqbsN9/Z6geZYuDTJ7dlrzlJb6UBSXnj0TDB5cy4gRdYwdW0s4bEvN04bsk5Ft2dnZpFIpkslko+i2mpoaFEUhJyfnJx/bMAz6tJR3ZhcRj8dZuXIlPXr0ICjzlO105Hy3LXK+2xY5383RSx7BV29oS4UGsbHXR+RF83jkCR9Llmg88kiSTp0KGMy99LeFoa1CO5D4yP8yrDDUggdYGjnfbY+c87Zlb5jveLxxpFNTDEN4DabpT6r6cPwzf4EaW0mX6H8oNNZTNeg1XF97APzOJrRNX6P5oyLPv1OHlaomN9we26jC6TSAZNzGqrfT+9vlUG12anReT0glEiJtU10dRKNxVq0qZdCgPA48MMhtt9ksW5bgq680Jk7M4+ab22EYwvNx1CibYcMc+vd3GoqE5+am6xGYZroOQHU1TQxz6foGliX6kenaFwqJ930+yAu1Q6ldTDxqEouLfVKmgR3uh263o7CjmGOvFkKWFkKLmYRCoNX3K5HQWLQ4mzkLcvhmYRemzQizYYOKorj06+cybpzNsGFJRoywKSgACJGVFaJ9+w6t/v+Fxqlyksm0R2tm4fTM79nvb+zVuzf8vreE1Dz7NnK+2xY5323LPjffyTIC085DrTe0mf1uIrf/neS2UDvNcaCsTKRlq6iAu+7ys2mTypNPJsjObo+up6PiDQO6dxc13Lzro7byr/jrDW1OpB/K2I/p5kT2rfnexexzv+/dgL1hzrdf86RJJvsTT4xHXfkY4ZWPoLkJelc/SXfnM5L+E1D8uTtF8wwdmsshhwSJRCx++MFh2jSNiRPzef/9AgIBl4MOshk50mH4cJu+fV00LR2d5qWd3J00TzSms7AkmznfpTXP5s0KqurSv7/DUUc5DB+eZNgwm7w8gAhZWRHat+8oNU8bs08a27xabStWrGC//fZreH/58uV07tz5Z9VrUxRll4YqtkYwGNwt+7W3Iue7bZHz3bbI+a5n0aPww70AOJH9WN3rM+oS7XnwQVEL6M47YdiwAN3iT9Gz4hEAYv7B1A35kM6FuYRCTXKbt4Kc77ZHznnbsifPt6bBlgJ8fL4WarKFRsOxc3C/+iXKpon4qr6iYPahxEe9hZu9P3rFYsDEF/ChqmAlUmiqhpOqxFUjqK6JY4TShcIdCAYbz5+mCRGnaUIoeQW+DQOysoIUFobQdRgzBo49OsEjd2/ih0U2H3+Ww8QpWTz/vI94XIjEkSNhyBAYNgwOPBA6dxZj8sbtExlEcF0hDkMhce6aGiHcvHQokE7NkkjUL7qFQmihQoxUGXptkmjCj+MUkEoGyM8RbbKyxDGCQSgr68L6kgSLl/qZ932EbxdksXh5CNdVCAZshgxVOPtslUMOgaFDFSIRhVhMeJB6YlzXRXrNlmrleThOfdqX+mn19gMhQDWtsaOEYUB2dnrfzMLre/Lve0tIzSMBOd9tjZzvtmWfmO9kBcw4GWpExAn9b8IY+jBGC4Y2EAvZXo2j226DhQvhwQehX78gPp+4vgeD4t4gPx/y8khrnlX/gXm/EwcKdUU9YiKhcLeGHGb7xHzvRsj5bnv25Dn/SZqnnkAAojq4+99PrNuZBOZfhFY1G712AVrtQugwHqXTUVgpdprmGTsWTj4xgXPnJhYtdPhkcjafTcni6ad9JJPiPn7ECBg+XGifkSOF8c7na3vNEwjAptIioXmW+Zm7IItvF2SxbKUYeyRsM3SYwkUXKYwdC4MHKwSDGrGYttM1j6YJQ5v3fuZ61p78+97R7JPGtuHDhxOJRPjoo48ajG2mafLpp59y6KGH7uLeSSQSiWS358cnYd7NANihXizr9hmbKtvzhz/ABx/APffAIYdAfvWr9Ky7FoCUvxc1wz8mv97QtiXvIolEsmdgGFsWnp4A8Twj00W981EP/xD721vRFj+OmlhDaNrBmMW/x4kMbFSg23Z1TAvAASuKbaZIWSFQQNfAUfwN57As8ez3i4d33lBILJDpukMkkhZRucEy9OoScEx6FsKlZ8JlvzJI+YuZPreAadNg1ix47TV49lmxT2EhDB4MvXuLgto9e0KnTlDUOUFIKYO6JIriJxQoIB4PEAgIQebVQgDxrOv1RcD9AQgUYZlQWQUbNsDGjeLZe71sGSxdCtFoABiI3+cwsLiOg0dXccVv1jBscJy+g7viyy5o5FmbSAjh6hUwVxSxvSXRCZlFwZv/rzaM9Fi8Y2YKcQ9Rd6HlxUqJRCKRSHY5qSqYfBRUzhPbxdfC0IfTRYoysCyxoLx2raiD+sADMH06PP64uCfwaht5xrVIRCxeN2ie9Z/A9LMBF/wFMH4ihLu14WAlEsnP4adrHhrqgyUS4GQPJnbIdPxL7sFY8giKk4JNn0HVPNz2x2PaEXam5knGTfp2hn6/hqvONYjrxXz9bQFffQXffAMvvQRPPCH26dQJBg1qrHk6dhSaJ6yW4f4MzVNekdY569entc/SpbB8OcTjfmAgoaDNwOI6jhhbwXWXrGLY4Di99u+GkdX2miczes+L8EulxL6SxuzxxrZ4PM7UqVMBWLduHXV1dXz88ccAjB49mvz8fM477zzWr1/PxIkTAfD7/Vx66aU8++yz5Ofn069fP/71r39RVVXFhRdeuMvGIpFIJJI9gJJn4dvrADD9PVjRfTKry7rw/PPw9ttw3XVw2GHQ3nyXfnUXAGAZnbDGTqR9QSdpZJNI9iIyxWNTAgHxeWZqDo9UCgIBHWPkYzj5w1BmX4xix/D98HvcgrEoXY4DAkJMukFQDXBMcE1QfGiaOKYWMnCMAkyTRnUUPONPICA8zB1HpIEMh5WG/0H5uQl8cWFoA9EuWgeubeJLlnDgmAhDhwa46CLR3rKEAJw3T3iyz5oF//ynELT1I0ZRutAuz6RdnklOdgpfUMXw+xq83C1LPGxb9C8aFYt3VVXikSniFUV4lHbpAv37w+mnw8CB0K8fdChIEVBqSCWSoEawtB7YBMSc1M9NOCweXvoXRaGREbM1TFN47GemifG8Pr2FBEVJi1evIHlLQQCJhCIFqEQikUh2P8wamHwMVMwR2/1+B8OfaPFiVlcnFoKrq0XqyEcfhcmT4Y474KCD0vc6iiLuJbp0Ec8N19vNX8OXp4n7DT0LDv8EsovbbqwSieRn8/M0j7iH1jTPGKSh9DwPN6s7SsmjULsYkmUYa/6OEuhFMvsgXF/OTtE8qgoBXRzDtU2ClDD24AgjRwZIJmmI0F20SGieRYvgq6/gb38TaR7rR4yqdqFdrklBuxTZWWnN46WgNM3mmqe6Wuid6mrxeebcduwIRUUwdCicdRbsvz/07QuF+SZ+aus1TxaW1hObAHYba57MlJpNSSREzTdJmj3e2FZeXs7VV1/d6D1v+9VXX2XMmDE4joNt243aXHzxxbiuyyuvvEJFRQX9+/fn5ZdfpmvXrm3Wd4lEIpHsYSx+DuZcBYDp68aKXpPZUNONv/wF3noLLrpIRLRFYlPpW34mCja2lkv8gE/Iat9rF3deIpHsDBqLx8YCx3FaFqVAg2FI7XUWtBsKX/4/qPkBpexLqP0Rep6H7euCqrjYwSKIrwU9G1uNgOOg6gYxvRiDAPF4WlD5/enXqRS0by9EUzwO4bCF3y+8Pt14GfGo2SCefQaY9YLVTJm48Y0Yjo5fSaL7/QTzCthvvwCnnpoeg+tC6YYES+cuZvUaldLNBpsrDMrKfdTFNBKJJFErn0RCo6ZGeEf6fOIRCAhh2a6dEMWRCOTkiPouPXoIb9LM1CReeppkElKpAMlkEakWUvFm1lbwvF23Fe/7aipOVVXMoef1mbkWqWmN6zO01B+JRCKRSHYbzFqYfCyUzxTbfS6DEU+3aGiLx0U0W12deDz5JHz+OVx9tVgUjkZF9IR3be/YUSz6NlD5HUw5HuwYaAEY9x7kD2+TYUokkh3Lz9Y8GWnWcfyQ0xf6XQ3l03HXvoti1aAnlqMlVmHmjaMudxzADtU8Ph+4pI10TTVPJORHKyigX78AZ5yRHoPrwoa1CZbNW8zqtSqbNxtsLvexucIgFheap87KJx5vrHm8PnTp0ljzZGeLSLnu3cX/zczaaLuj5jHNtFG1JWQ2j8bs8ca2oqIiSkpKttjmtddea/aeoihceumlXHrppTuraxKJRCLZm1j6InzzWwBMo4hv8yaxfmUP3noL3ngDzjhD1DPKYy6DKk5EJYmthKgY9CHZ7Qft4s5LJJKdSSPxmMHWDC0NHoI5A+CY2TDzElj1T0huhpKnUDqdipJzIIqq4WQPxGk3BisVIqn6sQIFGIEArktDLYNGnuQIUeR5VgoR5hXMBjuRxEymvVRTKSHuFAWUpIVSN5s6qxBU0B1QlVWYTjFabkHDORQFOuSWkTekgmEDmo/PcSFp9MENFrU4P8GgEHSuKx6pVOsiLjM9TeZzUzzD15YMYK3hfV8tpcrJTKUSCok5NwwhhLdUMP6n9EMikUgkkp2CWQtTjoOyr8V274tg1J+aGdocR1zfVq4UKc7KykQ0+0cfwfnni9RqXo0kEPcPeXnplGYA1C4VaSrNKlA0OORN6DCuLUYpkUh2Ej9b83j4C6BuFWT3A0XBDA5ELf0UrXwqCja+yknkRBdR3fkGUoWXYQTDO0TzeGkPdb0+CixD8/gCQC2QXIVpN9c8nduVUTCsghH7Nx/f3q55PINqa0i905g93tgmkUgkEslOZ9krMEs4Z5hGZyYxiZVLezNlCvz733DMMXDccZBvLOaA2NHoSi2OYrCp338JdzmwUXSGRCLZd9haCsFGwkQPw0GvQ7tRoiakk0Jf/yZKYj30ugbyDybudCJqiTUrQxei0XGEF7lXFFxRGnuatiTmXBdU3d+Q2kTX02lODL+KUrsESy9ArzcouS4koiY+pwQzGMEfzFhNs5O4rYxTVcDQkyTd9Hx4Qtjrn+f56b32vGIzaz5k1trOrIHQEt56YUtpHbeG9321lipHUUT0Xeb/9K2laPkp/ZBIJBKJZIeTqhapI8tniO2e58HoF0BpfCEzTVF3dONGkUJt0yZRk/rDD+H//T849FBxHayt9dK1iUiNSCTj+hhbB5MmQGKT2D7g79DlhDYbqkQiaVu2S/OAiHTNLoaaEsgZiOKvw8raD7vrWehrXkMr/wIttZH8lTeQVfpXYsUPk8w/nnBY+dmaB8Q9vm6oULMEyyjAX3880wTTlJqnJc2zpZp9Uu80RlaOkUgkEolkSyz/O+5MUbTIMjoyIzSJslRfpk4VhrZx4+DUU0GJreIIjiSgbMZFYWPP11A6H5MuDC6RSPY5ttsQoyiw3zUw4SuIiNSzWsU0fN9fjVKzsMGb1BNqmfn4VTUtmDLTqjQVt15B8ZhVgKIbDZ9bthBaido6LNPCVnOwbWGEsywhsGK1JnasrOFYjgMpx18vTIVXZ1N0n59IRAwtlUoLz2RS1CyIRsXDNMV4wuF0WxBjcd3GbYBWnRgaPlcTEFsLtcvEs91KbpsMvDlznHT6FM+L1udrspDY5HytIZ0tJBKJRLLLSVUJ45dnaOt1Pox5uZmhzXGEEa28HFasEPcFn3wiDG3HHw9HHSXSSXqRIYoi7jtCIdKaJ1kuItqiK8VBRzwLPX/dlqOVSCRtzE9yPgsUQLsRkNULLbcYJ28kZpeziR04hZqh72CG+gNgxBaSM/dE8r49DKN6xg7RPKkUmPE6bEtonlQqXVtaap7mmmdrekbTZGhbJnL5TyKRSCSS1ljxOsw4HwUX22jPD50nUe0WM2OGMLQdcIAQnoa9kVOyjySsrAFgQ5fn0Hv9gsJCudAqkezL/GRDTLtRcOw86H0hAGpiPaEZEwj9cG2DgPLy5mceo6UUHk1TmTiOEH6mE8CNFDeIT7PBW9HGDnTDcnzYNtTUCBHoeYTWVCapqRGLbbW1kKIANAPThHhM1ElIJuuFqGLg6AUN0XE+X72HaYYCSSTSdQM8L0vbFuIz09PTa5s59kbpqurf10gQSC1CXf8eTul0UpXLSJYtJbVxDk6GaG4JwxDni0bTaWbSXq7ptFqZ3rst9SPdH1c6W0gkEolk15KsgM+PgIrZYrvPJTDmL6BqzZsmxfW9vFzcK0ycCO++K5wLx40T18JgUFz3wmHIz4fCQhHhZhik01RWLxIHHHQvFF/ZZkOVSCS7hp+sebQAhIpQc3pjZBfhqgFQFBIFJ7F55HdUFf8Fx99ZHKPyCwrnHkj+/GPQKr9udiipeXae5tmy3gFFkca2TGQaSYlEIpFIWmLF6zDjPMDFNgpY0m0Sm6P9mT4dnn8eRo6E006DoFrOSeEJ5KhLAVjX/lHocxl5eY0L3Uokkn2P1lJzwJaLTANgZInFsM4n4M66GCVZRmjNU/gqJhIf9joYQ5udo6nXaCAgPBQza4qpajpPf9wpQM+LYKfKUPUkjurHwsSsWIWmpT0tbRtQhDjV8VNTkzm+AIHsYrRUCXU1ZnpsuoGpFxMyAmJ/Wq/nkFng2xN+maRS4phejTTPo1XXRYFxz8Net8vQY4tRq+djm0lxPnUjBLth6zlYm0swOkQwWlOLrfQtWV/nwfOQzewPtFwwXlGkl6dEIpFIdjGJMph0JFTNF9t9r4CRzzaLaANxfauogM2bxaLz55/D3/8Ohx0m0uWbJg3Xc0WBLl2gY0dhdAOEM9AXp0D5LLFdfA3sf8dOHqBEItkd+Fmap57M+2kRbaWj9LmQaK9f4VvxDL6lD6NY1QQqPyEw+xOsgiNI9f09dsE4qXnaQPO0pHcMo+XvfF9HLgNKJBKJRNKUZX/FnXmhiGjT27Gww+dsqBrIzJnw6KMwbBicfTZkBWo4LnAM7fTvAVibewdWnxvpLCPaJBJJPa0Jk22OeOp6CkrBATDjAtjwEXp0IZFpo0j1uZlU3ztACzSco2n9AkifN5kE11Ua6rNBfboSJUDcLcKqL3ytqwl0bT2JhIkLKIDtgGODP2jg+AoaUqN4RbXdrAKsSISAvwzHSoLuRwkVoPsCDcXAYesFvk0TKivFsycsvYLcNTVpB4asLPG+ooh9g8H6FCrlJWBV41jJtMh1bIivRokU4zpgRsvQfEUtzr/nwamqYo68lCpeaqzM4u6JRLpgODQvGO/NsUQikUgku4REab2hbYHYLr4ahj/ZzDPHcUTkRlkZrF4troWffw5PPy0Mbb/6lWjnRbWFw1D0/9m76zC5qvuP4+9rc+/I+mx047JA8OApWrS4UyjupQKFtrT9tWhpaSlOi1twKhQp7lCguIYkxD3Z3ayOXfv9cXZ2VmO72YTk+3qefbIzV+cs7OxnzjnfU6VmtJWU5E/iwdvHw5JX1ONRJ8O2f5GFfITYiPQ681D4e9qy2nVE6TFy4y4mN+JsIrNuIDLzejSvAbPmZcyalwmTu+KN+znZgQeiaXpb3pDM0/eZp3PeEd2TwiZCCCFEe9/cAe+dhkaIZ1byddWrLGjZkjfegN//HsaPh9NOg5JEin3tgxhofgDA/MRP8Ta9nAED1AfeQgiRlw8mndcWWGXRQbDHM7D9XwmNGFroYU//PbE3tsGoextQ4Shf2sm2VXDKlwbJh13f19B1VfYpFit0yOVDVRCAFzhoJdUYltUWUHUNonELvbQaL3Dazptf16CmBjKug2tV4UfHQKwKy3HaXmfbeVawwLfrqvUMOqwR11qiJZVSQa++Xm3Lr2WQl8lAkK6B0AU/h9854AY+mt/QejPZbkebum5riZh2pVSyWfVvT2tB9DRqVQghhFin0ovh5T0LHW2bXNhtR5vrqtls8+bBggXqPfe55+Daa2HiRDjuuMLfCrEYVFTA4MFqRlt5eesHwmGgBgTN/5fasepQNTO/m9lzQogNW68zT7vzdJmUFSkjV30p3kFzYMsrIVIOgFbzJtY7h2C/uAnmrL+i+S2YpoZtS+aRzLNuyLufEEIIkTftr/C/swDwrIF8Nfg16vwt+OILuOYaGDMGfvpTIMiyd+QIhlpvArAkcTpscx1VwzRisXV4/0KIDZemwbhz0Q78gnDg3gAYzV8TfXtXEl//GIumtl3z6wG0p0ZNqkSWSKgR6ZGICp/50iumqQKp5iTxSyZilY3FKBqGVTEWSjfHMjJYmRkUGfOxzcIFfL9jXf/OA9nzozN7mvFrGIVRk+3L7waBCqP5NRfCsLA9v95Bfk2BVFOWnAuBFiHsbjSp31ofxrC7BMh8e3UOxp3XK+j8urpbI08IIYRYp1Lz4eU9CuumbXYxbPPnHme0LVumOtxcF95/H266CbbeGs4+W733ahqUlakZFskkjB6tZrbFYqg3wvfPg9mT1UkH7gWTHgFdimgJIXrHstRM2nxeiUTUYytWApv/huDg2WQ3/SOBPRgAvWU6zufnMeC/1VTV3oDtzaG4WDJPe5J5+oe8AwohhBAAX98AH50PgB8ZwtdDX6HBq+bjj+F3v4OxY1VHWyLusbtxPEOD5wGoTRyLs9ttDCyVMilCiH6QGIW21wsw81746Gdobj1Mv5lw/hO4m19DOOwYgnDFv4/ypUEsPYOXqsFNZ7HiNjk9SaipYaRO3KEpqMKywLRqMNNf4LsugQt6CFFjDhRXkw6SGIY6r+cVwmx7hlGo6d95PQfHUcHVcQpB0rZV4MuPDs2vGxCNdgyHqVQh/Jmaje6CryfQdRuCbKebiBBoFrkgiZ7pWNomP1ozXyImL3+tnl6XVMcSQgixXmn6RpWObJmjHk/4P9jy8m7fsFIp9eFuKqXeB99+G664ArbdFs47T33Qm1+DurRUrRc0enS70pFhCB//HL65VT1O7gK7/RuMVV8jSAghVqRz2cL2nUKuW0Q4bb4S2gABAABJREFU+pfkRl+AufAxIjOuxWj8GN1bzvCmewlfug8G7YM99iysgfvgZRol80jm6RfS2SaEEEJMuUaFRSBwqliwyatk02P54hO4+GIYNw5+8QvQtIBJxmkMDf4JQHPxQeS2mUzcMdbhzQshNiQqPBbq6He71oGmwZhTYcj+BP/7EfqCf6Kl5xN5/zi8mbfSPO5GtNItehxVGYZApga9cSqR0CXMQdQHW5uDF63G1ZNEImrEp5/LEGmeih+6baMdIzZouLjNU7ESCYyIQyajztvdIuj515BfxyG/8LZpFhYzz4fOXK6w5kNLS2Eh8EikY4nefDvlA3hgJkGfQxi4+PFx0Dwd3W8Nn7qBqyfJmtXkXId4RF0nv+h3/nV1XtzdNFvXZ1jB6xJCCCHWC/Wfwyv7QmaxerzV72GzX3X7KWkQqA9v8+9/H3ygOtomTlSDC/Pv2/G46mQbOFB1uHVYq+eLy+Hrv6jvy7ZV5a6txFp9iUKIDccqZZ52XLdj51UmozKE40Sg6gd4Q0/AqH0DffqfsWv+g0YIi1+AxS+gR8qIDN4PKvZDs0dK5pHMs1atcWdbOp1mjz324Mwzz+SMM87oy3sSQggh+kUQQPD5HzC//DUAYWw4LTu+SpAdzZSP4KKLVEfbb38Lhh6ypftjRviqTEpLYi/qt3ycooQlI32EEH2ic4iEQjjqLuQE9mBatv0HxpAncb48Hz01C7P2NcrrtqFlyA/xJ1yObpd2OU4LM9A0VdX7p3VZFR/00CWSmYpZmiDUndZ9a9BMF82CELDCwud2uu4StWsInKq2sNj5PtsHthUtqp3LdQx++X01TQXORKLjCMx8aas8I+KAUU3QOFVVT3EmYITN6IYP8dGkgjH4OF0CZP5a7RcKj0ZpW+TcMApf7ffJL1guhBBCrHM1/4PX9ofccvV4u5th/Hltmzt/qJ3/V9dVR9tvf6tmtP3yl2p/w6DtA+jS0sIMt7b33SnXwOeXqu9LNoM9n4dIaT+9WCHEt91qZ54eSuRDoSyjrmv4yd1pim3P7C9fY8vE20QX3AfpBep345xHiMx5BDM2Bi/5XYzKfTEHHSiZRzJPn1vjzrZoNIphGESj0b68HyGEEKJfuLmQ4LNLsaddDoAfHUXDxFfBHsEXH8K556qOtquvBjsSMmTZrxjj/xWAVHQn6rf6N7GE0zYKSwgheqO7EJlXCJEdn8+XAvEHHUJL5b5EZlxDZPpVaEGaxIKbCJY+TG78b3BHnNvhOMuvaetoAzAN8PIPAxfdq8GPVAGgh1mcaCEINjerQJZfRDvQs2RD9XuwuFhty29f2QjVtvtpV8okH2Bdl7ZSLSUlhdIn6bT6Xo1kVdvzYTLjJ3EjCUyjBlPLgm2TIUmgORiA0839uK66dn49BLW2XcfF1E1TjTgNw8LI23xQlt//Qggh1qklr8Lrh4DXDJoBO90Do05s25z/ULt9h1supz7UffddNZNt++3hkkvUh67ptHoPz3e0VVZ2Wodo+t/aKoKQGAN7vQROst9fthDi26k3mae99vmh/cwvgKw5GH+z38CEs2D2Q7DgGah9B8IAPTWDyNwZMPd2/NLtcYeegDfwYHQ9lMwjmadP9KqM5L777svzzz/P8ccfjybD+oUQQnxLBH5A+OHPsGfdAIAXHUvNVq8QGMP48G048UQYPx5uvVX9YTFg2VUM864GIO1sTePE/5AoSbSNSJKRPkKI3uouRHbe3nmEZL4UCACGQ278/+FWnYT91UVYix5Hd2twvryAyMzrCUb9BsJt1O+ssGNtf11XH7q1jaL0C9stx0ZPt17CUCWlcjkV/LJZ0Gy7LQRms4WFx11XPV6VsjCdS5m0Hw1aVKSeb2lRjyORjuVYYrHCKH11vINvVBFGQLfBQoVV2+5+MfDmZvXhYj7Mgnp9QaACr+Oox92NTu3pAwEhhBCiX8x/Ct46Wq3Zo0dg0iMw7PC2zfn3xs6zSDwPXnkFzj4bdtoJrruu0BnnOOo9dsAAKC8vvP85Duiz74f3f6ieiA2D774M0cH9+IKFEN92vc48rdrnh/x6ZnmOE6q/z30Pkjurr1w9LH2NcNHLaI1fAGDUv49R/z58eT5h0Xi08u2gcheM4k2Jx/VvXebJNDUQTX+E1fg+ev0H6Ok5aLla8FsIiBDoMTxnNJnIJmQSu5Aq2psgKJHM08d61dl24IEHctlll3HSSSdx9NFHM3ToUJx8d2s7EyZM6M1lhBBCiL4TeITvnkVkzj0AuLEJ1G71IoE9mK++yHLSiRZjRuZ48tFa7OIKzBk3U1r3fwB4sU0Idnue0ljZao1gEkKIlekuRLbXOURC979/wthwMts9hlvzGs7Xv0Rf/j/09BxKvjqL7SJjMJZeDkO+0+U402ztcPKBiI3Ruji2HiYhM6dtJly+jJTrghWx8J0k8UjhXpqauoaxFZWFyWs/urP9KFFQz0UiXZ/Ph9H8Pp3P176dugvu2awKj/mFwPNrKYRhYd2ElenuvEIIIcRaN/sheOckCH0wYrDbEzB4nw675GeydZ5F8tEHWc45x2LHiRkev68OLZoknXXUe7ulZrTl3+/bMs/8f8B7p6oTOANhr5chPqJfXqoQYsPRV5kHCn+/539P5X9nGUbrSYx2f6RHSqHqMLSqwwhSiwkWv4pe+1/01o43rWkaNE2DOQ+BWYxZthV6yda02NtgRcetd5lH85qxmj8mnv0As/EDjPoPKGqZ1uN187cZSX9NjP/AkmsJtQgtFUdhTPgZOBN7vmkk86yOXnW2nXhiYWr6Bx980GV7GIZomsaUKVN6cxkhhBCib/hZ+O8JGPP+AUCuaHtqt3yW0Krg68+Wc8xxCUZWNfPY3z4jEXhEZ/yJyKwbAQhiowj3fJF4yYB1+QqEEBuolXXcd1dEon0pks785B6w77uw8F/w6a+hcSqx3Ax4/wQo3gSGHQUD9gDd6HAPEcOCoiS0Pe1AcTU0FtZ48wOwbAuKqtGtwkC7/Ad6kUjXMLYqIyK7W98gP1K0u3DnOIXg1z64x+wMllejfucbNhEzSdbtOiAw33b5TrX8DL88z1v5z6W7DwSEEEKItWraX+GDHwEhWCWwx3+gcpcuu+Vnq7X3wX/rOenkIiZu0cDd13xOJBtgMYdYUTW+lez+g+IF/4H/fh/CACLlqnRk8bi19vKEEBuuvs48uq4qb+TP6/vtNtpJaJ7ToXw+gB4bhD7mJNjhBsgshQVPw4KnYMkrEOTAa4Rlb6Ive5MiIIwk8cp3IyjdHr90O9ziiWRyZf2XecwWwmWfYaU+wKz9gJKGDzBTU9DoPoiE6ARFEwiKNiWMJMl6CTzXJaI1YqanY7V8ju4tRwtzJGoegtcfwht6NNpm1xM6Q7o/p2SeVdarzrY//OEPfXUfQgghxNrltcCbR8Ki5wHIle3BkuonSWWK+PqDZk4+Nc6Y4Q3887a3KCuPEa17Bqu1oy2MDYfvvopVVLUOX4AQYkO2ohCZ395Z51Ik7TkO6IYGw46AoYeQ/fp2+OJKbG8RNH4NX15JOOMu/Kpj0Yfsi25FQbNUx5rhdFjbRdeTWGUJdFd1YIWeTaAn2xYUz8t/oNdTGFuTEZH5TrSO96PaIz8y1DAKzztaDXrzVAjUzWhhjkiYwoqPIsxVEJgd77u78pLtrckHAkIIIcRaEYbw2f/Bl1epx3Yl7PUClG3d7e75kmOep0oqf/BuM2eek2D7LZbxyE3/JVacwDAjmLoL6ak4RYkOg2gAtSbcW0eq91WrWF2vdPO1+zqFEBustZJ5evh7PdAcvGg1YcNUNFzMfCdY+8wTHY474ocEw36I7jdh1fwHfdGzsOxtaP4GAC1Xg7X4n7D4n23njjuj8ROboRVXEyRav2KjCO2BuG5k9TOPH6Jla6FlFkHTbPTmKVjNn2E2f4qemrGCjjWNMDqcID6WMD6SILkrftkuBPawtszT0KA6IdvaNgywmj4gtvh+okvuQ/ebMRc8Tnzpi2S2uBVv6LFdriOZZ9X1qrPt8MMPX/lOQgghxLqWa4DXD1R/MAHhkINYOvIxltVFmfZlPWedG2f8iGXcd+UTxMIczsJ3sRY9qo61K9EmPYRWJGVShBBrz5qGyJ5KkXTYXzfxR57ClNRENnU+wZlxLXrLNLTMIsxvriecfTf+8OMwNr0AnGSXtV0Acjg4ThVWDMhC2E1IzneM9RTG1mREZL4EZJf7aS3Tkh9RalmQasqg1xc62nSvAdJzIfCx3UVQMgEvM4ewqBrsJGVlKnz2JF9ecnU/EBBCCCH6XODC/86GmaoUPvFRsOfzK5xhZllqtkRNDXz8vwbOOz/BTlvM447fPYWZ84lkDUx7OFakBHDBrQGr3eDCZe/A6weDn1GlKnd/BspXXGpMCCFWZK1mnnZcNz/LLYlWlED3avD8LJZjY8WTYDjdZIwichXH4gw9Vv3+bFhCsOg1jNpXMZa/h970OVqops6ZmZmYmZlQ83SXa4eRCogOAmcAGHEwY+pLMyDwIPTU7/RcPeTqIFuLk1mK5rd0OVeXcxeNwyvahjAygCA+liA+Dj102zJPJExh+Yvwmpf2nHk0Hbd4BxqKd6Bp5CUkF1+OMfMWNLee6EfHkWv4kOymfwSt0LiSeVZdrzrb2lu6dCl1dXUMHz6cWCzWV6cVQggheiezFF7dH5Z/rB6POA5/+/txF1h89mmWH/2oiM2rl3PPJf8iEXOxGt8jUt/a0RapgG2vA2fQurt/IcRGY3VDZF5PJUc6C7FoqjwRf/gZmAv/TuSbP2A0formNWLMvJ1w5h0w5CDcoWfCgP1B75iq8mVReuqAyt9nT2FsTUZEGkb3YTx/P8XFhWvbWg1uuxlt+dBpWaCThaCZiBmDzFSIJ7Asp23dts4cpzDrbU0+EBBCCCH6jNcCbx4Ni55Vj8u2UaUjoyvOKPlZbe+8neOCC4vYfYel/PVXT+FEfLVGqe9jZOeCUw16RJVfzqv5H7y2v7q2HoHd/w0Duq75KoQQq2utZ55QI5OBfPdEqDv4ETWQwAcMDehmPcu8tsxTNJAW/djCTC8/jd74GWHNB2j1H2Fnp6K3TEXP1XQ4XsvVQq4WGr5c+c3mj+n8GjQbN745XmJL3PiWJKq2xKjcFi1SCo3z8WpbZ92FOWiescaZJ1JciT78JrQxxxG+dRxaej6RGX9Gyy4ms9XdoJuSeVZTrzvbXnrpJa655hrmzJkDwN13383OO+9MXV0dp512Gueddx777LPPSs4ihBBCrAWNU+G1A9UfHwBjzoDtbyXVbPD++/DD8yy23qyBydd9SMxziWXepzjf0WYWwYTfQmxox4V1hRBiLVrVELkmfL81xmkG3tBj8YYcg1H3JtasGzEX/QuNABY+RWzhUwSRAXhVP8AddgpB8RZt58iXguyuAyofklc0InX173nFnV2+X1hzzdKyGA54PmjZBtB9DLPd/fg5Nao0dCFbgx6roqio+7Afi3XsPFyTDwSEEEKIXsssg9cPgtr/qceD9oZd/wlWUWEfPwPZwlql2GrWRioFr7wCF1xosecuNdz+h4+JZHx0Xb2XBSHo+KoKiFNZyDx1H8Kr+4LbqAbefOfv6rpCCNFH+iXz9KDzWpY97dMl8xhRgrIdCUp2xPchyGebXB1681T0zAK07CLsYDFaZpH6veylwE+pgQuEoJmtXwZEStQAb7scz0iSMUaQMUfhOyPxI0NBVyHHccCLg9G6tvRayTyVk9D2/4DwjcPQat/Fmj8ZXQvQdrkf3ZDQszp61dn2yiuv8OMf/5itt96agw46iJtvvrltW3l5OQMHDuSf//yndLYJIYTof4tfhbeOViOKAIYfCyNPhtxyXnghycknw87bZ7j32s9xnCixxZ8RX/4wGiGhkUAb90Nwkqqet51ct69FCCH6QL7MYxtNw6/YDb9iN7TUXJx5f8WYcw9adil6bimRmdcSmXktftHmeIOPwBt0BGHFloDWYweU7/ftLLAgWHFnV4fSlIaNrkNEB9xc16STT6jQNnrfsqCoqHDu/Pk8r3DtfAfi2vpAQAghhOhW8yx4dT9omq4ejzgedrqn4/tZpkYNMAzbfXrcPAeKq/n735OcfTYctH8Lf73iK0wrjqnZEGTRdWj7/DTIFTJP3cfwyj7gNqgPhCc9ClUH99tLFkKI3uqSeTpp/zf/ivaBnnNIh8wTKSco35kAlXm0NRhg6KZVdUkrAFzQ10XmiQ5E2+tFeONQWPIKxrwH4dOBsO1fVv8FbcR61dl2yy23sN122zF58mSWL1/eobMNYOutt+bRRx/t1Q0KIYQQq23hc/DmkWoEEcDYc2HEMQRBwJMPz+WEc8rZbVKWe29bhp0LiNS/TnzpfWiEBHqc3PBzcaKDwIy3LZwrhBDfdivq7Apjw/G3+CP+hCvwFzyPNe9ezMVPooUuRtMXGE1fYE+7nDA+GoYdBoP2RR+wK7bdsXy8rvftLLD8cT11dnUoTWknCZrm4Lku+BE0T32QqOuAboOZAFrTd7sZy/lzr2htuLZZeW4TpOZByzzILFEjVrM1kF1W+N5txMk1McKcAJs8smYvXAghxMat9n21XlpmiXq86UWw9dUd1tDBz3TtaAMC3+f+Wxdy5oUVHH5IiluurcFIhUCIXjoOrXl6x5KR+czTOBVe2Rtyy9Wsi0kPw7DD1/5rFUKIPrSy3KFpKy9v3357dzlkw808Cdj9SXj5u1D7Hnx9LZRsBmNOX7MXthHqVWfb9OnTufjii3vcnkwmqa2t7c0lhBBCiNUz+xF45yQIXULNwB//S9zkPvjNHv/+l8epv5rE/nss5LrLZ2CkAuz0WyTmXIFGQGAU0TLm98Qqh4EVheROamq/EEJsAAxjxUM4VYeSRW7gQfgDD4JcLdbCxzAX/QOj9jW00EdrmalC19fXqjVcKifBoH2g8jtQPhHMWJ/OAutpfbiO96y4gYNrVUNmKppeghYsxvd8TNvGLBpHW+jsZsZyEEAm5aJl5qOn56Gl57b9q6XnEWbnoqXmgVu/SvetAxXMIe0uB+Kr85KFEEJs7Ob+A945Efy0erzNX2DTn3XdL1sDoavWZvPVTAvf87jvPoMfX7kFJxw2myt+OYewMUS3IfA1PN9ET0zACJqJxHOFzJOaC698F3J1qkNvlwdh+FH9+7qFEKIPrFrmWfWM0ZNvbeZZyVp1uhmH3Z+GF3ZSS7K8fx6UbgUV2/XuRW4ketXZFo1GSafTPW6fN28epaWlvbmEEEIIseq+vh4+ugCA0IiSHX85ucR2uCmdBx/QueCP+3LwHtO57fcfokWHoNe8SWLR5Wj4BHqchtF/JlpZjRG11OhO6WgTQmxANC3E6WGibvsyj21rE0QqcEeeizvyXMjVEq17CnPhP2Hxy2rmcJCDJa+qL1Cj4Eu3gIodoHw7NQqyZDOIlK3xPev6itdsy99zPjgGRhI/lkBza7DMJLq/DFePohOgeynI1qr1Dxo+g5Y50DIXWuagtcwhkV6IxkpqynSm6a1rLSTVejeRCoiU4uIwJzuWIZHyNX7tQgghNjJhCFP+DJ/8Uj02HNh5cs+dXn4Wz1Mf0HoeuJ7OLX+LcslNkzjpkM/4y28+J4gMJZvVMEihO6WEXo7AD4glYhjREpV50gvULIZsrXpf23kyjDi2/163EEL0odXOPCvYp7/0aeYB1dHWTZWmla1Xl1+rDiep1gd9YWeV+97+PnzvEzUTWqxQrzrbdtxxR5544glOPvnkLtuWLVvGY489xp577tmbSwghhBArFwYqlE65Rj2MJKkf/nuy+nhy9XDPI0kuvXYzjtv/c6788SuEDMGoeZWKRVeiERAaCbITH6IouRlmpLCouBBCbGgsSwW2FZU86XZtgngFesUpMO4Uteh27buw6EVY/BLU/U/9Hg59WP6J+uL2wgmdQVCyKcRHQmyY+ooPV89HysAuByPWYz2XHtdsw4NsI7j1eC0NhI3LCZqXYOQWY+QWoecWY+QWYuYWoOUWqfVnetDdlUM9QugMI4gOQ4sPxyhqve/8a4gOVvevdU3jbipFw5QpDFn5j0QIIYSAwIX3z4UZd6nHzgDY7UlI7th110C9J/o5m5Z6IIR0Gq67fTDX3zmOc45+n1+c9jaePxQ3C/E4+EEMIzEYy7awzWwh8zTPhpf3UuWQ0WCne2Hk8f33uoUQYi1Y48zTi1KQfXHPK7sf121fBtIBqkibVRhmhqhegxnJojs9f6a1KuvZtSnbErb/K7x7CjR/A5/8Cra7sfcvdAPXq862888/n2OPPZajjjqK/fffH03TeOutt3j33Xd59NFHCcOQ8847r6/uVQghhOjKz8C7p8IctS6OHxvLkk2eJF1fR9Nil7/eN4I7Hh7FqYd+wEUnv4WmGVD3IRV1f27raPO2v5/oaFn4WwixcViVkicr3MeIwIDd1NdWV4DbDHUfqLr+Ne+pf9MLC/tnFquvFV4wAlaJWldAj6j1BvSImoUWeOihix246sPIIAduI3jNbYdHWr9Wi10BsREQH47njMCLjCCMDieIDSeMDieMVLZ1pEUiHZY8EEIIIfpObjm8eRQseUU9LpmgSnglRnbZNf8hq+tCS1OSXNMcGutd/vS3sTzyZBXnn/AWZx31AWFo0JwtwYiomW+JIog4AZGKqsLJGqfBK3u1rgunwU53w6gT++UlCyHE2tbrzLMOrOx+PK/72W8+Ds1BFaYDVqzr9vbnX5EuYx9HnQTz/wXz/w3TboKqw2DQXis+yUauV51to0eP5qGHHuL3v/89N9xwA2EYctddahTODjvswCWXXEJVVdVKziKEEEKsocwyeONQqHkHAK9kOxaNf4balgGEWg3X3JbjoX8N4YcnTuWMA97CMA0cbwYDm25qXaOtmJbxf8au2H4dvxAhhPh2CgJwgwRB8R7opXtgbdIa4rK10DAFGr+Chq+gcapaD6ZlbodOssKJcq2j6nsvRCOwBhBEBuHbgwkig9DjgzGKRxBER6DFh2MWD0e3E23H6AG4LT2fc1XWbRBCCCFWW/NMeO1AaPxaPR60L3znsW7L2beVDwugqQmW1zv4YTWX/iXgmZcr+fV5X3D0dz5ANwyy5nACN4KFGjDie4DZ7hPcpm/UjLb0IvV4h9th9Clr+9UKIcS3Tn42cRConLMuZ7/5/oq353JqdlxP97o6a8MBqvdt+9tg2Vsq3713Ohw0RSpBrUCvOtsAxo0bx7333ktDQwNz5swhDEOGDRtGebmsTyCEEGLtCZZPQXv9QLTULAD8wYdSt8mDpJviEGS47IooT/6ngt9cMI+jDvOgcSSO+yaD0zeiEeLrxSyr+gvRxKaYseRKriaEEKKzQgmTglxOlWyx7AoY8B311V4YqnKOqXlqwESurvVrOeQaVKdbhy9XzW7TI2rtAb31yypWM+GsEoiUkvZLaMqWElgDCaykOqbdfToOxNqN8szmwNELgXJV10kQQggh+szil+GtY9T7IMDYs2G7m9vewzp/wJsv/5XNqi/fzfCLX8V54y2HP/zfHL63r0bYOJIWYnjZCNGo2j/wAc0qZJ7GqfDynoWOtu1vhbFn9N/rFkKIb4kV5p11MBjPMHre5rrqvaH9Pp3vdY0yT3QgTLwJ/ns8tMyGr6+FCb/uzcvYoPW6sy2vpKSELbfcsq9OJ4QQQnTQPmwGi14m+sGRaJ5afyc76kIaRl9NS8pAd2u4+EJ46Y0KLjl/CrvusJT6JRaj4l8wIn0tAJ5eyvzKvxApqsZKVqNbMipHCCFWR350fXcyGRXyug1rmgaRUvXVh/QsmC1d7yn/wWR3wbTzfa5v6zYIIYTYQIUhTL0BPr5IrXeq6bD1n2CTnxGEGm5rZ1r79zRdV+XDIq1lIYN0DT/5ocmHnxXxx199zjab1VG/1KKocnOyy5dg6C5G6/uXEbEKmafhKzWjLbNEbdzuFhh3dv+3gRBCrOfWOO+sRabZfWfZWs88I46Db26Dpa/Dl1fBqJMhNrRPXtOGptedbXV1ddxxxx28/vrrLFiwAIChQ4ey++67c/rpp5NMymwBIYQQvdNhNNGMu0hMOQct9AgxqBl1Cy2Dz8byoLE+w4/ONfjfRyVc89sv2HHrWjIZSKYfZ4R7gzqXUcmikfdjVWxOpDiJUyIdbUIIsbpcd+Xbe1pvYG2UYrGs7oNjEKgPJ3saedr5Pte3dRuEEEJsYLw0vH8OzLpfPbZKYdIjMGS/tswTBFBfrzrcgkC9txlGobOtqSHDyT+wmTYzys1XfMaE8Q1kMpBucdH1JZiVmxOLNGFbWZyEXcg8yz+DV/ZuLduswQ63wdgz12FjCCHE+qs3eQc2sMyjaTDxenhuIngt8MmvYJf7e/NSNli96mybPn06p5xyCrW1tWy11Vbsv//+AMyePZt77rmHf//739x7772MHz++T25WCCHExqdtNFEYYH31a5yZVwPg6cXMHPI4Qdm+6DmYNw9+eI7O7DlF3HHNZ2y9aT1BAIPcfzDKvFkdYw5g1ug3cAZUo5lQVCIzFoQQYk3kR0/2JAy7f35tlWJpXxKlfXBMp1dcBrKn+xRCCCH6XGo+vHE41H2gHpdsBrv9G4rGdphBkU6rNdlcV30ZBsTjatsXX8BPf2JQv1znvhs+YdyI5rb35FgMXNelNN6Ea1ZhFVPIPPUfwSv7tJas1GCnu2WNNiGEWIE1zTuwgWaesq1hzJlqhtvsybDJBeBU98GJNyy96my7/PLL8X2fxx57rEsJyc8++4wzzzyTK664gsmTJ/fqJoUQQmxk/Axka8DP4gU2mmsR+fgMIsueBiBjjODL5NOktM0pysDSpXD66ZDL6jx488dsMqaFwA8prX+QQe5dALh6JTXjHiIxsJpIBIqKZPaCEEKsqZUNVNC0rs+t7VIs3Y3yNE01ynN17lMIIYToc8vehjePLJRvrDoMdrgdgiw0zVCZhyQ536GhQc1qS6UKhxsGzJkDZ5wB8Sj8/faPGTooTRCoD3CLitT7bFExxOwsRgmFzNP8PryyL7j1qmTlTvfBqB+si1YQQohvjTXJO7CBZ54tL4fZD6jZbV9cBts91Ecn3nD0qrPts88+4+yzz+52rbYtt9ySk046idtvv703lxBCCLGxydSoRbvD1jn7y+cSm/Jb9PRcAFqcHfms7N+kw4EEWfjqK/jVr6C8HB67bxkjy1sIg5DEktsoTj0KgGcOpH7UX4gPrsYukzV4hBCityxLfbi3ou2d9bYUy6roXBIlX1KlJ+tiYXMhhBAbkTCEabfAxz+DoPWNcItLYey50DitLfOEWSCYQ2BWE4ZJPE8d6nnqveyDD+C3v4VRo2DyHcsYFE3jB+D7kEhAEILe+oFrrMwuZJ7ad+C1/cFtBM2AXR6EEceus+YQQohvizXJO7CBZx5nAIz/EXx1Ncz/N9rYjwFZmqW9Xn3UWFFRgb2C/zps26aioqI3lxBCCLEx8TMdO9pq3sX69IeFjrYBJzF12Gs05gbiuvDOO3D++TBsGNx/PwwaXoYT1amsu47i5aqjzXeGk93iJuIDRmKXJLFt6WgTQojeypcw6U5PJUx6U4plTa3JfQohhBB9wm2Ct4+DD3+sOtrMBOz2BGz2S2iaXsg8qAlnfs5Fa55K3MmQy6myYK4LL70Ev/gFbLkl3H03DBxWTjRmUVICJcWqs62kGErLoLjUKmSemrfg1X1bO9pMmPSodLQJIcQqWtMcscFnnk0uAlPVNra+vqoPT7xh6FVTn3TSSTz88MMsW7asy7YlS5bw8MMPc9JJJ/XmEkIIITYm2RoC3yWXC/G+eZDw01+j+S2E6DQP/QnNY67ECx0cB154AS69FLbbDm68Uf0BEY0ZxOffiLX0KQCC2Fiym1+PFhsCRdVYtoy4EUKIvmJZag2ZSER9H4moxz2NnFzTUiy9tbr3KYQQQvRa/efw3HYw9zH1uGQz2O9/UHVoIfO4qlxkzgVDVx/Qhr5LhJq296h//AOuvhr23hv+/OfW9zPHISyuRjestvc1ywLdsAqZZ8mr8Op+4DWDbsGu/4DhR6679hBCiG+hNckRG3zmcZIw/scAmIv/QywzpY8v8O3WqzKSYRgSi8XYd9992XvvvRkxYgQAs2fP5uWXX2b48OGEYcg999zTdoymaZxyyim9umkhhBAbJjeXxW1JE5nxJ8za1wAIzBKaR15KNrY1gZfDMNSIzvvvh8MOg5//XC0GXlqUoezLY4gsUx1tful2ZLe6HZxKAjOJHXNkBoMQQvSxziVMVmRNS7H0hdW5TyGEEKJXZt4H758Lflo9HvkD2OHWtpkAbi6L27qeTxCC31oqMgzVV+BmMQy47Tb417/gpJPg3HPVDLZ4XO0TLU3iZhLonlrnGsMuZJ6FT8FbR6v14HQbdv0nDP3eOmoMIYT4dlvdHLFRZJ5NLoRpN4HXwsC6+4Ej+uGi3w696my7+uqr275/6qmnumyfOnVqh31AOtuEEEJ0LwjAa1yA88WP0FMzAchGxrKo8goIB2FkoNm1+d3v4D//UYuDn3IKRKNQUdLMgCmHYte/AkA4cB+8nf6FbsTRNHBkjTYhhFjn8uVNulswXEo6CiGE+NbzUvDhT2HGneqxHoHtboIxZ7ZNZQgCcH31SajrQnOzel8MQ7XemmFAfdrhwgvhv/+FCy6Ao45SH54WF6t9bFt9WZaD61YRhhQyz9yH4J2TIPTBiKmylYP3WUcNIoQQG5+NIvM4SfXeNvV6yppeIb02amN+S/Wqs+3ll1/uq/sQQgixkfNnPY7z4eloXhMA9faezCv6BWHOIczC8qYoF1wxhK+mwB/+APvsoxYEj5l1DPrqQKyGd9WJqg5Hm/QwtiFTGIQQYn1jWeqDRNel7cNBSwZECCGE+LZb/hn89/vQ8JV6HB8Fu/4dyrftsJvrQmAm8f05LKtxSbUUtoUhLKmN8+NLB7NgAVx/Pey8s8o8jqO+bFuVBoNuZjBM/xu8fx4QglUKezwDlbusxRcthBCiOxtF5pnwa/zaj6hzy4mv63tZj/Sqs23o0KF9dR+9MmPGDK688ko+/vhj4vE4hx56KOeffz6R/F8gPdhrr71YsGBBl+c/++wzbKkzI4QQa1UQtIZNL4f15S+wvrkBgFAzWZI4l6X24W0jQGfOK+bHv9uKlpTObbfBVlupP1iKjXmMnL4fVmuN6HDkiWg73Q16r97ehBBCrEVS0lEIIcQGIwxh2s3w8c9V2UaAqsNgp7sJzDLcrMo9uq4+aA0C8HFo0qrJZqcCbtupvpheyvmXboGu69x1F4wf31oyMlpY4yd/ni6+/CN8+iv1vTMA9nwByrZam69cCCHECmzwmcepJPudZ5k7ZQqbrq2F6L6F+uTTyPr6ev773/+2dVwNHTqUnXfembKysr44/Qo1NDRw8sknM3LkSG666SaWLFnCH//4RzKZDL/73e9Wevx+++3Haaed1uG5lXXSCSGE6B3XVVPqtfQ8nA+OwaxXs9K8yFBmDn6MemNbIkENBFne/7iYn/06SVmZxnXXwfDhkE5DzP2S0Yv3I+Kr9x5/7I8xtr8etA1pqJAQQgghhBBivZRZBu+eCgufUY8NB7a9Fsaeg+tpZNrNWgsCaGpSnWe5HCxrTOJGE22Z59W3S/j1pRUMG6Zx6aVQWakyj6aB56ljHAfKyjrNjAhD+PTX8NUf1ePYMNjrJSge31+tIIQQQohWve5su+mmm7jjjjvIdVr5z7IszjjjDH7605/29hIr9Mgjj9DS0sLNN99MaWkpAL7vc9lll3H22WczcODAFR6fTCbZeuut1+o9CiGEKAgC1dFmLH0O56MfoLu1AGRK92HGoAdZUl9JczNAFa+8AjffDBMmqPUKHAdSKSj332RCzSFYYT0AdcOuonTixYUhn0IIIYQQQgixtix6Ua2NllmsHpdsDpMehtLN2/JOXn6gIRSyUEMDNDY6hGEVTz0Fd98NO+wAP/qR6kxLpdT6bJ6nMlAYqmMNo909hIEqG/nNrepx0XjY60WID++XJhBCCCFER73qbLvlllu45ZZb2GOPPTjhhBMYOXIkALNmzeLBBx/k1ltvxTRNzjvvvL6412698cYb7Lzzzm0dbQAHHHAAl1xyCW+//TZHHHHEWru2EEKI1edmsthf/orIzOsACNFoGnkJzSP+D+oNUikVPh9/HJ56CvbcE044Qa1VkE5DdfwJtlx2HDpZQgzmDLqTYOgpRHOqxIoQQgghhBBCrBVeCj65GKbdVHhu/I9g6z+BqcKIW6gM2aXjTddVx1kmA8uXw/33wyuvwMEHw+GHQzarji8rK6zx4/uFUmTZbGvm8XNqVt2ch9SG0q1gz+chuuIB50IIIYRYe3rV2fbII4+w55578re//a3D88OGDWO33XbjnHPO4eGHH16rnW0zZ87kyCOP7PBccXExlZWVzJw5c6XHP/XUUzz22GNYlsV2223HRRddRHV19dq6XSGE2KC1rcPWbl2CDmVOGr7Geuv76A2fAOBbA6jfdDLZ8n3V+gW+OvZPf4KvvlKBc889VckV14Xty25j66YfohHgazGmVDyOV/49khFVWkU624QQQvSHlb7fCSGE2PAsewfePRmapgMQRirwJt6DMeLgDu8BQVD4vn3HW36b66rscuWVMHs2HH887LyzGnDouhCPd31PMQyI5DOP2QRvHgmLX1Qbk7vAHs9ApLTPX7IQQoiNl2Se1derzrbm5mZ23XXXHrfvtttuvPfee725xEo1NjZSXFzc5fmSkhIaGhpWeOxee+3FlltuyZAhQ5g3bx633norxx9/PE888QTDhg1bo/sJw5BUKrVGx64N6XS6w79i7ZL27l/S3v1rZe3dvjxKe44DlhlizLmPyOc/R/fV78hUyd7MH3Y7rjYQvSGF78OHH2r8+tc2zc0ap56aZcSIgOXLwTBC9qq8ip1jVwGQ0yr4vOIfpGPbU6ynyGZVAO12sfBvKfnvu/9Jm/cvae/+Je3dd1b4ftf6PrS+tncsFuuT80jm2bhJe/cvae/+1W17+1msr3+POf06NFRPWiZ5IE2b3ERgD4RlqQ7vAdms6hQDVQ4ykyl8UOn78O67Or/8ZYQwhLPOyjFoUEBdncoz0ah6P6mvV7PbTFN96bo6r+UvoeitIwqDFwfuS3b7B8CLqFl33zLy33f/kvbuf9Lm/Uvau+9I5lkzWhiG4ZoefPrpp1NZWckf//jHbrdffPHFLFu2jLvuumuNb3BlJkyYwE9/+lPOOuusDs8fdNBBbLPNNlxxxRWrfK6lS5dywAEHcPDBB3PppZeu9r18/vnnXdauE0KIDVUYavi+RhCApmlks6BpXd9SzKCRTRqvoLz5ZQACTGYW/4Svw5PIuXrbed56q5Tbbx9MMuny/e8vJZHw0TTQ8di/4v/YruxRABr9obzKHWTt4RhGiG2HmGZAaWmIZfn92gZCCCE2LmGokUr1vD5oLBZ2+164vpg4cWKvzyGZRwixMXHSUxm1+BJiuW8A8LQEM0p/zpLYQV3Wi86/B+TfK4JAo7nZIJcrZKcXXyzn3nsHMmJElmOOWYZtB62n0cjlAoqLVZ6Jx0OKiwNs22vLPMXabHZo+SGONx+AmuKDmTPoN6D1ahy9EEII0YFknjXXq3fkSy+9lDPOOIOrrrqKE044oW022Lx583jggQf45JNPuPPOO/vkRntSXFxMU1NTl+cbGhooKSlZrXMNGDCAiRMn8uWXX67x/ViWxdixY9f4+L6WTqeZPXs2I0eOJCr11dY6ae/+Je3dv9q3t2lGO4xwyeXUl213nF0WqX2B4ik/xMguAiBIjCOz7T3EtQlsnaol3ZShOe1w051Duedeh5128jj1VB/Pq1DH08B+8dMYZr0KQL22Oe8VPUF5xWDyk5pjMTUCtLR0w5rOLv999z9p8/4l7d2/pL37RvvZCt2JRNR74Ybe3pJ5Nm7S3v1L2rt/tbX3sIHEZ92APe96tNADIFO6J4tH3kq8uIrqbipq5N8DQL1fNNXn0NxaWhoyNKUd/nxTFY//3WaffTyOOSYkl0u2Hatpai23REJ9maaa2ZbPPGXBhwz95jQMrwYAd/zPiW16CZtqPX8Y+m0g/333L2nv/idt3r+kvfuGZJ4116vOtkMOOYQwDJk8eTKTJ09Gb/2UM2gtUB2JRDjkkEM6HKNpGh9++GFvLtvB6NGju6zN1tTUxLJlyxg9enSfXWdVaZq2Tqcq9iQaja6X97WhkvbuX9Le/cu2o4RhjPZNrmmq7AmoKeV60IT95UVE5t5e2Gn0aegTb8DMZCip+5Ks77JkiclFV2zC6+/a/PDsFibtFkfTTDIZiAaz2c8+kDL9KwCW6vvwdeXjRK0SSktVCHUc1dkWi21YJSTbk/+++5+0ef+S9u5f0t69o2nqA9CeWJZ6b8rbUNtbMo8Aae/+Ju3dfxKpDyh758/oLTMACI0Y2c2uoXHAOUR81bnlOF0H+rV/DzD9GnR/Ki0tLnULI5x/6RA+/tzi4oua2Wb7BGFokkqpspL5/rIwhJIS1cFmGLRlnpKW5yj7+ig0vwXQYLubsMafx4YUf+S/7/4l7d3/pM37l7R370jmWXO96mzbb7/90NbxKJrddtuNW2+9tcPabc899xy6rjNp0qTVOteSJUv48MMPOfTQQ9fGrQohxAbBdbu+6XZYEHzx6yS+PAUjM1s9jgzAn3g71qhDwc8QNkwl8F3e+zDBWb+YQGOTya1//JxJ2zexxJtIfZNDpf4/JnmHENWWADBDO5M5yVuIJyyKimDQIPXGnl+nbUOa0SaEEGL9tbL3m2/5BAMhhNi45ZYT+fgCqufd1/aUV7kfmS3/RhgbhZ4FWqvWZ7PqPSG/FptltXsP8DP49VNxsy7vfljCORdvBsB913/KVhNSLPEmknEddB1aWgrHRaOqcy0Woy3zxJdOJvL5aWp2nR6BXR6E4Uf1X5sIIYTY6EjmWXO96mzraa22/nTccccxefJkzjvvPM4++2yWLFnCn/70J4477jgGDhzYtt/JJ5/MwoULefHFFwF4+umnefXVV9l9990ZMGAA8+bN4/bbb8cwDE499dR19XKEEGK953lqBGbrJGZAfe+mU5TO/Q0li65ve76l4iiWjfwbpWVJ7DTomRrcrMut9w/mN38Yx/gxzdx73adUDc6QzUJRpIaKyP/YPPMDDE0tsPq5+Se+MS+i0tEoKoLhw1UIFUIIIfqbZa24pMqGOstaCCE2aGEIcx+HD3+CmVGD/QIrScsm15MecLz6VDGtMk/+PSCbVSW0gkDloyCA8vLWzrdMDZkWlxvuGMYfbh7NxC3rufZ3U6isyLVlHt2qIhJRAwjTaTWYUdPUOYuKYPiwkMSc38Nnv1UXtEpgt3/DwN3XUSMJIYTYWEjmWXPf+lVUS0pKuO+++7jiiis477zziMfjHHXUUVxwwQUd9guCAN/32x5XVVWxdOlSrrrqKpqamigqKmKnnXbiJz/5Sdvac0IIITryfa0tDLquCpkAJZmXGTL9LKysKuvrG2XMG/RXauPHYrsazfNVORTLzXHBhZvw6L8HccLhC7j4vG+IRNSiqoYRMqT5FoY0Xo1GSKA5fFM5mVrzKIbGoKIChgxRIz6FEEKIdUHX1Qej7dctzeuupJgQQoj1XON0+Oh8WPiftqdqig4ks9lf0aPDcTOFzJMvmVVXB/G46mRraVEDEW0bUimVecIWl3PO25znXk1yzolz+PGpszHN1sxjgqlnsXR1jvwgwkxGzWirqIAhg3JEPzsLZrXOsIsOgT2fg9It+qlRhBBCbMwk86y5XnW2PfHEE6u032GHHdaby6zUmDFjuPfee1e4z+TJkzs83nrrrbs8J4QQomdBAJmMhmGoN9zGRtDcWoYtvZDyhkKplYbEgcwZdAcZBqOFsHy5Cp+zZsHPLxrG/Pk6N175FfvutrTtGC3MMbTxOkpangPANQewbJMnsYp2pNpRo2ZKS1dcM1oIIYToD5alyhi7rpoMoWlS0lgIIb51vBb48iqYcg0ErcP34yNJb3EDX80fxhgn2ZZ58qUiczn1IaNlqdlo+VltmlbIPF99pTJPY0PIndd8znd2qO1wWcOAaMLGttX3kYh6Pn/e0mgd5jtHwNLX1YbSrWCPpyFW1Y+NI4QQYmMnmWfN9Opjy4svvrjHbe3XclvbnW1CCCFWXxCoN8326wys6E3TddXMtkwGspkQe/EjjKn/KZFgGQA5vZL5A66nsez7ZHMalqXCJ8BTT8Ff/gJDhxg89/AnVI9upKWldXuujqG1vyOa+xKAjL0pqe2foahsFEWt13Yc6WgTQgix/tB19aGqEEKI9VuXzGOG6Av+Dh/9DFLz1U66BZtcBJv/hkyThj9nmso8WdXZli+hn//g0bYLlT7ymScM4ZFH4OabYZNNdP5+x0cMqmjG9wtl+HUdnKhFNprEsqCsrGMpLsf7BvOV70HTdPXEkANh0sNgFXV9YUIIIcRaJpln9fXqo8uXX365y3NBEDB//nwefvhhFi5cyNVXX92bSwghhFgLXLfrdPD2IzW743mQzWro6dkMnfFzSloKpVbmWSczs+QvBFoF1KuwaZpqhOdNN8HLL8OBB8IVV+gMLB1OmJpKiIvjTmXQst9ieqrDrqXkQNwdHiJeXCwjZ4QQQgghhBBrrHPm0Zu+wvjiJ+g17T7LGrw/TLwBiscD4HkpslmttaoHrc+p7zVN5aX8Ojb5zLNsmRpY+M47cMwx8Nvf6pTHR0LTVNINLqapZrAFWHjRapy4Q3m5OrYt89S/hf7WYZBtnQk3/sew7bWgy4hDIYQQ4tuiV+/aQ4cO7fb5YcOGsfPOO3PWWWfxwAMPcMkll/TmMkIIIfpQ++DYWT5E5kdvtp/x5mbSjG6+lRGf34MeqoULUvooZpTeRDa+FaVaPRkvTUM6SUOzw4IFcPXV0NAAF14I3/++WpcgpyXJ2gmKG++kfNFFaK3nqh96Mc2jr2RQmSGz2IQQQgghhBBrrH3m0bLLiEy7HGvOrWihKr0RxkfibXk93sBD0A0NqzX7uC54nk5TkyoVGYbqXKVFGaJGDZaWJePZbZnnm2/gmmvUcb/9LRx6qOpYy2lJwliCqF2DFmYxIzaemQTdaZsp0JZ5Zj0I752myllqOmx7HVT/ZN00nBBCCCHW2Fr9OHOPPfbghhtukM42IYRYj7juirdlsx2nieeyIZFlT1L5yU8ZkpsDQIDJTOsClpX/CC09j7D2G3QbwhxEcnN44dmtufu+OOPGwe9+ByNHqhGgQQC6FpCYdznli/4AQKg71FffTXrg94k5qqNPOtuEEEIIIYQQa8p1AT9NZNaNRKZfheY1AhDqNplRF9My8pfYsSj4gK+yimGoLJTLQSqlsktDA1QkajCap+J6blvmMTNzeeJfW/PwYzG22gp+9CMYMqRd5tEhGzo0ZatIJIBIoVqHk888ug+f/Qa+aq0IZcZh0iMw9KB10WRCCCGE6KW1+nHmvHnzyOXn1wshhFj3/AykajDcLBg2gZkk1B2gMPqzfRlJrXk69hc/xVr2bNtzdZHd+TL6V+rc0dgLP8TQXaJR8HxYuNTmqps34aPPY5z0A48TTjSxLBVaATR3ORUzTiTe8AwAXqSKJdVPoCcnEo+pABqG/dYaQgghhBBCiA2Nl0KffhfxaX9Ezyxse9odchzp6qtoDkdhdSpTHwTQ1KSqfNi26jTL5SAMMjQtmNoh88yaF+XKGzdl2kyHc852OfIoq62jDlSeyeXUv8XFrdd2VSdbLJ95cg3wzvGwsLU0f3Qo7P4UlG/TDw0khBBCiLWhV51t77//frfPNzY28sEHHzB58mS++93v9uYSQggh+kqmBhqnouVcaJ3dputzoKga30q2zXjTNCC3HPubq7Bm3YgWqEETnjWED7kAd+C5LFgQp8yZTzbjErHVyM8XXh/A9XePIxb1ufe6T9hh10oa3CrCEEpKoMT/mGHTjsTKzgIgV7wLdRP+gWYP6tDBpmn92CZCCCGEEEKIDce8J+CTi7GaprY95RdvhbvZn3Ar9yWXBXJdM0c+C6l1qlV+WboUypyaDpnniecG89fJYxlQkeXhWz5m8+0Hdsg8tq061SIR1dnWfu3pfObRmqcRef8QaG69x+QusOs/IDporTWLEEIIIda+XnW2nXjiiWjdfCoahiGGYbD//vvzf//3f725hBBCiL7gZ6BxKoQupgFevpRk4ELTVLTSBEHgQJAjPv9vONMvR3PrAAg1i6aqC1lQegHL5izFzmgqOJLF96G2zuL2R8bzxnuV7LXLEq761XQGJD3seDG6psqxlNTcQ8WsH6IFauGElsFn0TDuRtAL9SpdV4XT9jPrhBBCCCGEEGKllr2jSjIuebXtqcCpwh1xNn7ZJDAiaEFGZR66Zo4gUF+5HEQiWtt6bfnMs3ipzV8nV/P+Z+Uc9N2FXHbRDMpKfex4aVvmMQxVDt9x1PlbWrq5z4XPEv/8+2heg3o85nTY7hYw7G52FkIIIcS3Sa862+6///4uz2maRnFxMUOHDiWRSPTm9EIIIVZBEKiOqvzaAJbVcQQlANkaCFUPm663Ltqdr/IbuOjuMpxl7xOf/kuM1Ddth7mDDqNpzNU0huPxmlKkUsuwbYjHQcPm/c+T/PWB8RDC73/xJfvsugzHgWgUrJgNZCj55ifEF90BqPXZMlveSnbQyZDpeIthqIJpl3sXQgghhBBCbNR6zDx1H8Nnv4WFzxR2tkpg1MkEAw/G91o/9gpcdK8GXa/qNnPouprV5vuQSmltmYfQ5o33B3H7w2OJR32uu+RTJm23HMtsl3mMjufJ35vjqDL9AIQh8XnXUDzzl2iEoBmw7fUw/jwp7SGEEEJsIHrV2bbDDjus1v6pVIq7776bww47jKqqqt5cWgghBCpwZjp1WuVyhdGUbfxsh31MszVQ+qDVf4rx9c/Rl3/Qtt0r2Z7mcdeQK91NnbNehc986ZPmZrju9sG89noVu+24jN+dP43BA13QIOoAhkWQayH55WFEmj8EIIiNJr3dPwhKtsZCjfx0XXVOTVNhVma1CSGEEEIIIdrrLvN4tV8R/eYS9Pl/LzxpFsHwY2DYEWDGMAHdVJmHEDQtS2kJpNNq9/YdeKByVPvMU18PV90ymPf+Z3DAnou5+IffkKzwOmQez0i2Xb59+UhQ2cYwwE03k/jyTJwlj6gNdgV853EYuGcft5QQQggh1qVedbatrlQqxS233MLEiROls00IIXopCLqGzrxMRgW7thGbncqSBAH4y6dgzr4bvb7QyRbGRtAy9g80lh1LEOp4KRU4MxnVwRYEOu+9Z3DttZDLGVz6f00cOGkatuVimipQlpRZOMEcnI8OQc+XohxyMOx0P4Fb2nYtXVdlI/NsqZwihBBCCCGEaKdz5tEbPyMy/SrMhY+pGWIAZhyqz4cRx6mKHu2O9XwIA9B0MCI2emuZx6Ymdd4gUHmnfebxfZ1XXzW46SYwTYM/XdXIXtvOIGJ6HTKPWVFNaKmylJFIIc+0Lx9ptkwh8cGRGM1TAAhLtkDb/d+QGLU2m00IIYQQ60C/draBWs9NCCFE7+UX8V7R9rYOLDsJzXMgdPHqv4GZ92At/2/bvoFVjjv2l3hjfkIq4xC66vh8KZUwhPnz4YYbhvLeezY77gg//jEkk0Wk7YnEi2owjCzRIo340huwZ92oTqzpsOUVaJtdjKbpOEb3HYRSPlIIIYQQQgjRWT7z6MvfxZ5+FeaSp9q2hbqNP+Y8zC0uBqdSrVOda1CZx2tXNh8gtMh4SfRmVVUjP4Otc+aZNUvjL38Zxmef2eyxB5x7LpSUFJOyJxLLZ54SG7MsiR11uh0wmC8faS58DOeT09B81fsWDPs++k63gyVLrgghhBAbon7vbBNCCNE38uVOetJhbIPhQOASfnE55tLCouGhESMz/Ecsrfw1vl6CWa9CaSpVWNctCODxx+GGG6IYhs8VV2TZe2+bTKb1GoZDRq+iyP6G5JRjMRtV2UicAbDLgzBo77brtZVSaVc+sts15oQQQgghhBAbtzCEJa8S/fr3mDWvFJ7Wo7gjziQ35heYxUMxndYNhgPF1QQNU8nl2o1M1C1yTjX19Q5BoErqd848ngf33w+33uoQj3v85S9ZJk2ySac7Zp5oKUSK1ZJrPZXAt/Qc5tRfoE27Qd2vZhFuex36+B/K+mxCCCHEBkw624QQ4ltqZR1UbTlu2Tvw5VWw8GnyT4W6gzfiNJqH/5plLUMhADerRmDmR3XW1MC8eXDttfDZZ7D//j5HHDGD7bcfRlFRxw6zQZmHKPnsbDS/WV1g0D6w8/0QHdTtfUvJSCGEEEIIIUS3wgAWPANfXoVd+27habOI3Mgf4Y4+n9AeAHTTd+UkccMEmDVq3WrDJhMkqVmueuTy67+1zzzTp6vM8803cOihHgcfPINtthneJfOUlkI0qvJMj5U5UgvgrWPQalqriMSq0L7zOFpyp75vJyGEEEKsV6SzTQghvqUsq1NplPbCEKv2Zfjq97D0tcLTRpTcsLNoHnExvlFKtrGGqD8DdJucn0TTHDwPamvh0UfV1+DBcNttsNlmOWbODDBNFTKLiyGitxD76sdY8+5R59cMtK1+D5v+XJWQFEIIIYQQQohV4aVg1v3w9XXQNK3t6cCqwB19PrlRPwKrtMMh3c0u8wKHdFhFAOh+BrephniQJdA6Zp4lS2DyZPj3v2H0aLjnHhg92mXmzLBj5omo6hymuZLKHAufh3dPgsxS9Xjgd2HSw6rEpRBCCCE2eNLZJoTYePkZtYB264hH7KQqPfItkR9R2WENtMDDXPxv7JlXoy9/v+3p0CwmN/JHNAz+KSl/ALGghmD5h+QaXXxfhUbHmINTVM3zzye58UY1yvP734cTToBYTJVWse0Qz1OlJZ3UhyQ+OwGtaaq6SHwE2i4PQ+XO/dsQQgghhBBCiO59GzJPejFMuwW++RtkawvPRwfDJhfhjzyLnNd1nbP87LIgKKy9lslAS4t6LmbU4DVMJdXoohtACE6oMs8TTyS55Ra17+mnw9FHq/N1zjyWBUVFK6kq4ufgs/+DKX8uPDfhN7DFZagLCyGEEGJjIJ1tQoiNU6YGGqdC2K6Wf/McKK4GJ7nu7ms1ta2B1lKPPvsuzBk3oaXmtG0PIpVkRlxAw8Af4uslNDeDoWXIpacSei66rkqo5HIwd5HJ1bcYvP4OTJwIl14KAwao4Nqi1vSmpUVD1zyK515JYs5laKGnNgw7Cna8AyKl/d4GQgghhBBCiG6s75mn/gv4+lqY/SAE7Up2lG4Fm/wMRhwHRgQLMILu133Ol4V0XbUGWyqlOsk6Zx43p/b/cqrN72+yeP8TmDRJdbSVlkI2q3IRtGYeXe2vaer5HjvbmmbA29+HutaBjnYSdroPhn5v7bWbEEIIIdZL0tkmhNj4+JmuoRPU48apYCXWv9GePWmcjj7tRuyZ94DX0vZ0GBtGy7CLaBpwBo2pGEauEB4tv4bALcxoa04Z3HzPCB74RxWDBmT52/U1jNs8SVOTKp2SzarOuEgEKiKzGT3jFBKZ/6nrGHG12PfYM2SxbyGEEEIIIdYX62vmCVyY/wRM+2uHcvcADPkebHIhDNyzS7bobt1nz4OGBpVVmppU3gkCVe6xc+ZZ3mByw12jePTJIYwekeLe25YxbGwljY1dM08kErZ9r+uqM88wuulwm/0Q/O8c8JrU44F7wc6TITakL1tMCCGEEN8S/drZVl5ezssvv0xlpdSrFkKsQ9marqEzL3TV9lhV/97T6gh8WPwCTP8bLHgaCAvbKifhjT2f+vhhpDImTY0qHHqeGu0ZBDCkKEsEFUL/8Z+B/OGm0TQ2mZx78hzOPH4eZvFQFjYmGTxYBdN0GjRCBjXfyWj9YsxMGgC/bGfS20zGKhuDLf1sQgghhBBCrD/Wt8yTWgDf3AEzbof0osLzhgOjToLq86Fk01U+neuqjrZUSnW0ZTLQ2KhmvpkmDC3OYhkAGg/8czB//tsofE/jVz+awQlHLECLV7GwsbJj5tE6lo7sfL22zj63GT78Mcy8Vz3WDNjyCtj0F1I2UgghhNiIrVZn280337zaF9A0jfPOOw8AXdcZOnToap9DCCH6lJ/t3fY+kl9bIAjUKMkeF9rOSy2EmXfDjDuhpVAqEs2EEcdC9U8JyrYn3aImuWUyaoRmKqU625qaWkuueDZff1rKdbeP4fOvizhon6X8+sczGFSZJedCqNvE4+peDANKnUWMXHw6JS3PAhBqJqkxlxFU/wJ0kzDs4X6FEEIIIYQQ68b6kHnCkGDxa4TT/oq+8F9ooV/YFh8BY8+BMaeDs3oDsoOgMKAwn3kaGwudbratMs+n71dw3e2jmTYzzrGHLOJXP55JRZlLS6pr5kkkVFbKZCAaDTBNOuSctu9r3oV3ToKm6YXXIetWCyGEEII+6GzTWqf2h50+bdU0jTAMO3S2CSHEesGwV7p9VTvCVrvDrFV+bYH2cjm1KLdltXsyDGDRi/DNbbDgSWgXUEN7AIw5A238eW2lStxs4fzZrFprLb9+gevCzJnw+GODef+DKrbctJHHb/+YXXdsIAwhYoPnW2TjSbQsZDMhA1P3k5x7AYa/HIAmfQz1m91HdMgk7NbXKdUjhRBCCCGEWM+sy8yTqYHZkwmn34HeNKXDJq9yPxh/Huaw7/U4C2xl13Pdwr/5zNPUpB67LkyfDo8+MpjPv6hip22X8/LjU9hik2ZMU2WXiNMu82QhFlMdd56ntmua+nyrfc7Rwhx8ejl89QeV0QCGHw073C7rVgshhBACWM3Otq+//rrD4yVLlnDWWWcxbtw4Tj75ZEaNGgXAzJkzue+++5gxYwa33XZb392tEEL0BTupFgbvrqyKZuHqSTItHZ/uriNslTvMOsmPxOxOfj0AGqcRzJyMPncyempOh3285HdxR5yFN+gw0CM4FuQvlw+m+RltYQjNzTBnDvzzn/D661BZaXD5bxs5eNfPScTUOgaJBJgRi5xTjec7FHtzKZ53NvHG59quu6ziR7yfO5nq+GYUt3t9K3qtQgghhBBCiHWgvzNP4MPil1QVjgX/hsAl31cVWqW4w04jN/JcwvhYAOIA3XSq+f7Kr9c582QyKvMsXgyPPw7vvgtDhxr8+fcN7L39VwxIuti2Ki+JbkFr5om3dr6Zpjp/KkXbGm9QuJ7e+AWRT0+E+k/UE2YRTLwBRp8iIw+FEEII0aZXa7ZddtlljBgxgmuuuabD81tuuSV/+ctf+MlPfsLll1/OLbfc0qubFEKIVbHKIy4NB4qruy4YrlkEiWoybvcLhbdfGHtVOsx6Gu3pdpN3AcjVYi18lGDe/Zj179H+8CCSJDv0VPyRZxImxq3wepmMCoymqQLn5Mnw1FOqPX7wAzj8cEgkitEqJhIYNRiJLGapTWAm0cIIsel/o3jmL9D9ZgC86DhqxtzFknAi2sJvsO3CtRxn1WbyCSGEEEIIIXpvvcs8qdkw8x71lZrXYR+/dAfcEWfhDvk+mLEO25qbVSda+9eRyajOru4G860o8yxcCI88Ai+9BPE4nH46fO97kEiUoFVMxI/XYBRlwWrNPDjQos7lOOqauq7KT6bTYBihyjyajzXjOuyvf4MW5NSFB+wBO9+rykcKIYQQQrTTq862d999l4suuqjH7TvttFOXjjghhMhb0xKM3VntWWZOEqyEWhjcz6oyK3YS13PA77p7/l59H6JR9Xhl92P3ULmlw7F+BnPpc5jzJ2MueQqtXRAOMciW70tm0PfxSndRwdO3IZPBiDhtAThfLsU01WvO5dRi4Xfc7vLgQwZuDg7av5kDvhehLOkQiUBxMRgRhxxVtGgQi4DWPJ34p2dg1r3Ren2d1IiLSI+9FEOPMtBPkU4HxGIQifTu5yWEEEIIIcTGYIPMPH4ac/GTMP8uWPoS0G5ZEbsCRp5Ipup03Njm3R6ezaqyj+3zkpvNoOdqCLwsWtzGiCXRDKfDfXXOPLW1cNONHo8+pqNrIUcf3sw++9oUlznYNpSUqMzjmlWkTbAj6lo6qs3yHXb5AYSWle9wC0gwi/i7P0SveaP1IBu2/iNU/wQ0CUFCCCGE6KpXnW22bfPJJ59w/PHHd7v9448/xu7p02YhxEZtTUswdmeNZ5kZDsSqOp4rt+J7DUN1vnRaBbOe7rXTMpYd6GEWY/HzmAsfx1zyJLrX2PF6sQnkBhxKduCRYA/Ea5hN08J5WBaEEbDsOfiJkfhaSOhl8QObtJ7EsBzq6uDee+HOOwPSKYOD917AEfvPI2rniMYsItFq9FiSXA6KilpDpZEjMv0vRKZdjhaoF+oXbUHTZncTGbwdRUZhpKll+ThOzx2JQgghhBBCCGWDyjxhgFH7Bub8yViL/o7WIcNoMHhfGHM6DD0EDBstC+S6djYaBmRSGaLUYLlZ0G0CNLK1s0mlXCwLtJTKPJHykYRBiJftmHmWLoU774R77w0IfI3D953H9/aYRzzmEbW7Zp5YrGs+syx1L66rthv5zJPyGNp0HyVv34bmp9XO5RNh5/uhZLNV+EkJIYQQYmPVq862gw8+mMmTJ1NcXMwPfvADhg8fDsDcuXOZPHkyTz/9NCeeeGKf3KgQYsPRmxKM3cmPcFzR9lXtHOp83c73mi/Jr+srvtfOpfsDN4s//wW0+Y8RWfRkp3AKfmQQmeSRNNnbYxSNQNNAd5sx6j8kFw7A80vIZiFiQ2lYg9H8FSmzGkMPyOXADedx71NbcMNfEzQ0hBx5wBKOP3QW5WU5cq0Lf2u4RLJT0YsTmBGHIIBy73Uqp52L0awWLg81i9y435Ab9yvisYisxyaEEEIIIcQa2FAyj1f7FbG6yUQWPIie6VgmMoyNQBtzKow+FeLDCx1rrZ152azqXOxw7VwN4fKpGJZLqIGm69AwFdMcQEunzOPP/Qo/Xk3gB+QykPHmc/c/tuCvt8fJ5UKOPXgRxxw4m+Iil6ZGcL2umcey1Cw9w+ja4abravZbW+ZZ/in2O6cxrP6j1oYwYcKvYfP/U2u9CSGEEEKsQK862y666CKWL1/OAw88wIMPPoje+hdbEASEYciBBx64wjKTQoiNU49rlrXbvjozp1ZW0nFFs8w6s6yOgbDzveaDWH6//L12HrEZjQK5Blj0HMG8J9EWPo3VuYPNqiSTPIL0gKPxS3YkWP4pfs7FaN1uBM3kUi3kcnMJ9GoymQgRM0e2bi7Z0Mcoa2bp8mIe+PsQ7n6kiuUNFscc7fH9w5dRqk9VI1J1tW5Bvg0ilkvcqUE3I1Qt/DlFNfcX2rFiF9ytb4PSzYlLiUghhBBCCCHW2Lc580T8xVgzHiY2/wGMxo863odZTHbAUeSGnEh81G6Ylt52jvYddkEALS2q4y7fSWiQIWiaihYULqj5zfiZFnJ+95knYjWzpK6EOx4Yyr2PV5HJ6PzgBx5HH7yUuD+9LfMUF0NTM+gaREyXhFODnqgiHle5JhYrvNYwVPfVVtLTz8AXV8BXf8IIPQD80okYO98NZVuuesMKIYQQYqPWq862SCTCn//8Z04//XRef/11Fi5cCMDQoUPZbbfd2GSTTfrkJoUQG5a+DIqw8k4hTVu1tRLy+4ShCp+GoQJjLqf2TSQKx7RfTLt9sDTSs4k2PgUfPUlY+xpa6NH+MkEkSXbAkbRUHE0qsTuabhKGEAvmY5kuvqbOaZpAkFMdehkfO96AZ1ViGw34GZ/Fy6Lcf98Y7vvnGFxX5/jDF3HOSfOoHFFF7dIszUvV9TIZ1fEXi4MGOJGAAc33Ub70LxjecrVTpBy2+RP66FOxZf0BIYQQQggheu3blnm8VB2J5f+iuP4xrNqX0Ci8gFAzcZP701x5IpmKg8GI4jiQzoBD4Rztua66vuepfBOGEKGmS+YJvBw5F9xc18wzb1GCu2+r5qEnR6LrcPIxCznzhHmUDhnebeYpKYHAV52YUTuLlVBrTefXZINuOjiXvgX/OwMap6rXakSZX342FbtcTixetHo/JCGEEEJs1HrV2Za3ySabSMeaEGKVrUpQXB2WtfKw2tLS8XHntRLad5jlr9/QULjf/ELc+dCav64d8XEXv0/x0mewlz2J1fJZl2sHzhC8gQfjDT4Kv2IP0lmTdFqVVYlE1JfmZvF98IPCyE+fSNvr0siRSMCSxSY337M7jzy3BaYB3z98IWefOJ+qwTlcF7K5LHrEbguRfqCWK49GIeZ+TVXDTcTcrwo3N/pU2PpPavF0IYQQQgghRJ/4NmQezW3Am/kE5TWPEW14Aa11VleeX7oDbtWJ+FXH0uJVts2Gi5iqgw3U+borb5nv1FtZ5gm0SFvHZD7zzJtnc+Pd3+WfL21GLOpz9onzOO3Y+Qyo9FaaeTTAikC82EZ3oLS0h/KbmaXwycUw857Cc4P2JrPF9Sydm6FCM7o5SAghhBCiZ33S2fbJJ5/w3nvvUVtby/HHH8/IkSNJp9PMnDmTkSNHEo/H++IyQogNROeyJd1tXx35DrDu1kSIRHq+Vn6thPz3eUGgjolECiNS82E5kwEzNx+r9gXMpc9h1ryE5i7vcm43vhXeoEPwBh4C5dtCpxlj2az6ty0w67YKvKh7Mk1oSScIDZswzDJl1kBue2RTnnm5kqJYlvOO/4jjjvUYXJkjDNXi5YYBgW7jGUliiTlkMy6OCeRqGdZ4JxW559quHxZPQNvhbzBg1xU3rhBCCCGEEGK1rbeZx2vCXPwk5oJHSSx7Hi3seKAXHU96wLEw8gQorgZUZvEyhUzkeeor35GXzRau0d6KMo+uqw6/nJtofT7LJ18P4bZHJvDCG0mSZSl+cfp7fP+4kNISl8BfceZxPTWrzTQhnrBwSpJE4910tAU+zLgdPvk1uPXqOasUtr0WRp9CmE4DU3r8OQghhBBC9KRXnW25XI6f/exnvPzyy4RhiKZp7LnnnowcORJd1znttNM45ZRTOPfcc/vqfoUQG4B8CcbugmL7Eh+rw7JU8Opcg39V1kpY0XO6DlqQIVL3Bnbd89h1z2OlvuxyTKhZZEv3IFNxCNnkwfjOCECNrjRXMGo1P6LVM5KYxhwMXCxLlVUhCHjh41247d6BvP/5IIYNSfOr86Zxwn7vYJcPA81U4VFrnXVnWoRWEi3nEKmsxmn8nNL6R0i2TMYI0+o+jQTh5r9D3/R8WeRbCCGEEEKItWS9yjzpFvRFT+PMfRRz6X/QgmyH7Z4zhszAY0lVHoMX3xI0TZVfDDJEqCHVmMVGdXD5OG3H5TvyVjZLr3PmCX11w7oOYRjyzP925bb7B/L5tErGjmzh8gu/4th93iORHI4fmhi6uk53mcdumkrguVi+uk40blFcVU2i2OnaxjXvwfs/hOXt1qEbfQpsfTU4A1b8IoQQQgghVqJXnW033HADr732Gpdeeik77rgj+++/f9s227bZf//9efnll6WzTQjRRU9BcU1CZ56ud63BvyprJXQuxxJ4LlbDh9j1rxKpfxW74S20IN31WHswuaLtycS3xy/dgaBkW3J6su26nld4Xe1fm06GEqsGL5slotkEqNBqJKqxMlOpqw945InB/O2+ocyeF2XH7bPcdmMNO01swIwkMJ398ZpmYhsutq3OqxsWXqyaiONgWCFO7VsMXPozrOwsda9oZIecTGSHP6LHBq5R+wohhBBCCCFW3TrNPLk6zCVPYS76F+ay59GCjr1+vjOSVOUxZAYcg5vYFiuiYUdAd9utr9Y0lVzWxc0AIZjmHIxEdYfM09ysBhjm12hbWebR4tXo/lQaGkMm/2MIt94/lEVLbHb7TpY7fryMXXduJNRLMCIH0NI4k0TMJR5vXYeufeaJgOclsWIJdLcGzc9i2DbxsiQlFZ062jI18OmvYMadhedKt4Ltb4HKSWv+wxBCCCGEaKdXnW3PPPMMxx13HMceeyzLl3ctozZmzBiee+65bo4UQojug+LauMaKqDImPnr9xxg1r2LWvkq89k10v7nLvqERxyvfHS9WDWXbEjpDyWQ1WlrA8oD6qbixBC0ZB9dVJUvynWEtLWoEq0MNVuNUyLo4FpAFcnMIi6uZNj/JnXeU8uijOqm0xhGHprn77iyjxtrU1dmk3SSBC7oP8XgZ0WgNvpnFStg4VpKc5xDNfEpy5oVYtS+33XemaBK5LW4gOnSiTGYTQgghhBCiH/Vn5tHSCzAXP4G5+J8Yta+jhX6H/QKnCm/IMbhDjiUd3Z6cW5iSpmmFe/VzGcLlU/ENV82aC9UsNstyweuYeRwHYrFVzzwfTkly7z2l/POfOn4Axx2V5syzoLTCJputJKVVEgTQ0KwyjxOtgXgWK2KjGSrz2La6z1QKPM8hNKtAg0QJJBLtMqCfhWm3wBdXtCsZWQxbXgHjfgh6n6ysIoQQQggB9LKzrba2lurq6h63G4ZBpruaCUII0Q+CQH2l04U1DnQdCAP0xs8xal8lsvwVWPYGttvQ5fgQA7doIsGAPQkG7IdbsgteyzJs9xt0DYJQLcbt+WpEZyTi4vs11DZWAVBcrNYpsG2Ix1Vo1TNTcSIuhg66BrmcxpPPl3LngxZvvgcVFSannwFnnQVDh8YAdf9BoMJkfuSoGXFIhVWkXCjyoCiYTdn036LPfRANNVXPd4bRMu7P6COPIRHXejWCVgghhBBCCLH+Ceqnos/+F878f2E1/q/r9thotGGH4w89gnpjJ4JQR28ty0i78pP5NeSCAPxUDbZe2Oj7PWcey1J5xXF6zjzpjM4/ninnzgdt3v8EBg0y+en5cMYZUFkZJ5tVnXm5nPpqaemYebwsFNtgGVAUVftYFhQVFWYNRqOFTj/CEOb/Cz7+BTTPKLzIkSfCNn+C6KA+/zkIIYQQQvSqs23w4MHMnDmzx+0fffQRw4cP780lhBCiR6pUo962UHb7siWuW1gfwaSFYMn/0Brexm5+G6v+HTSvu841DTexDbnSPcmV7UlTdFfMaDG2XVgLIWJm0VsXBM9mVdBLtag819wMjpMlElGz2nxf3U8mo4Kno9egay6RCMxfZHPb/UO477HBLK2J8J0d6rn39loOOqKCSETdjxZk0L0aItksRYaN5iRxHKdDmRjdrSH29e+JL/krWqAWNw+NON74nxOM/zmJaEw62YQQQgghhPiW6pJ5zBC94SOY9y/Cef9Cb/yKzn/ue0Vb4g8+Am/w4UQqtwBNI5NRJSJz7cZDa5rKNPms013myXd+ZTLdZx5dV/fYXeaZOSfK3+4bwgN/H8TyBovv7lrHA3fVsM9BSaLR1nsIMhi5GqJ+FtuwycaSxGJOh7XuwrBw/vbZLAxVJ1+H0py1H8BHP4NlbxZOULEjbHsdVO68Nn5EQgghhBBALzvbDjroIO655x723XdfRo4cCYDWuvLtY489xrPPPsuFF17Y65sUQmxYgkCFoyDoNONsNbiuCn3ZbCEE5nIqbBnZ+XgL/otd9zZG3dvojZ90KaGS5xdviV+xJ35yT3Jlu+FS1nauoqLCmm75spCmZhOkIZUGt3U/TYOWFBCC7tqYpnrOtgvrJ7guhOksT/2ngnsfHcwLr1eQiPuccMRizvrBQjbbJIVZNAyKKmhpAcOtgaapELhoLvhpsMI5xCuqyWlJ/GwLRQtvoHTh1eh+o7qIZsDYs9A2/x2WjNYUQgghhBBinenLzOOmUxiLnkKrfwmW/gcyCwHIF4EM0fDLdsEddDjpisPxo6NJJCDaWr6ypUX9234NuVxOZalVyTy+r/Z3PTpkHsdRr8nzIBJRx/stWZ5+spJ7Hx3Mq2+XU17qcsqxizjjB4sYOyqNnhhG2lBrvuUzj5518V3wPbCtOWjF1eixJJ7Xun5cRHW05XVbmrNlDnz6W5g9ufBcbDhsfTWMOFYFNCGEEEKItahXnW3nnHMOn376KT/4wQ8YPXo0mqbxhz/8gYaGBhYvXszuu+/OKaec0ke3KoTYELSfcZaX7ySzullPrLuQCu3OEXqYTZ9gLfkIY/l/Vedaei7Rbq4dahZBybaElZMwB00iW7IbOS3Ztl0HrEDdTySigl37EJfNgm4mCfw5uDkX31f34fsqtOq6RUMmSaCpEpJhqLZNmQKPPAL/fmIky2oMtty0iT//dhqH7reU4mKfRBxMA3TLBh0iZobMkqkEnouuF0aLmoaL0fQFxS2fE5/zB4zcorZ784cejbHNlVA8fo1+LkIIIYQQQoi+0SeZp2kG/uxnKF30JLvUvYG+0O1wTKhZ+Mm98AYdjjfoUEJHDbazWr/yOSKb7Xit/PlXJ/O4rjpOA4yIRWM2iear84Sh2pbPPE8+OZL6eoPttmrg5qumcOB3lxGPB4XME7FxLEi3ZHDrVOYBdR7DBC100ZqnYhUn0CMOoDradF3t00V6MXx5FXxzKwStbWQWwYRfQ/VPwewuGQohhBBC9L1edbZFIhHuvPNOnnzySZ5//nmCICCXy1FdXc3555/PoYce2jbTbW2aMWMGV155JR9//DHxeJxDDz2U888/n0i+FlsPwjDkjjvu4KGHHqKuro5NN92UX/3qV2y99dZr/Z6FWF/1xQjMFZ27p2UcM5l8h1XhuW5DaksjZv27ROreJlLzJrssfw9zQarbc4ZWOX75Lnilk8gUTyKX2A7dihKLgRmDsCWDkZmvFs42bAIzies6heM7hTnLgpzr4NnVeMFUUi0unpffZuHGqmludNA09Vqffx6eegq+/BJKS+F7B4Sc8L2PGT+6AcNQYTOTBkLwsbD1JLhqjQRDd6E1UAYBxGMe+pLniS2ZjOEuKbRR2e7kJvwJc+AOGGt54XUhhBBCCCE2BOtl5glcjLq30JY8Q7jkaYyWqTidjg+sCvwBB+ANPJBcxf7oTmnh9WQ7vp58lgk9VaaxLzKP7ajM09SaeVIpeO45ePJJmD4dkkk47NCQ4w/4iFHDGjEMMPRuMg+qHL4fuGiamnQWidA2ky30XUy/Bt+oaps9B50mp2XrYMqfYeqN4LfmQc2AMafDFpdDdOCq/LiEEEIIIfrMGne2ZTIZrrvuOnbccUcOPfRQDj300L68r1XW0NDAySefzMiRI7nppptYsmQJf/zjH8lkMvzud79b4bF33HEHN954IxdddBHV1dU8+OCDnHbaafz73/9m2LBh/fQKhFh/rO4IzDU5/8q250dVeh401IeQmoPd+DaRhrcx6/+L3vg5GkG3x/vxavzySXiluxBWTCJIVON6WrtZcBBk1GjNMF0DzVMJfRe9NbTp+hwMuxpQAbDzWIF8yFvWkCRLAitag06WrGeDnWRpjcOnn8KLL8Lbb6tZbbvsAr//PUyaBNGoSYkzjGxtCt9zKSpqXdsNCy9ajZ9VodfyC8NPw8AjsvwFnEUPoGcLM9m8xJZkN/0DwcADQNP65OcjhBBCCCHEhm69yjzNS8nM+A/WsmeI1L2A7jV23T+xBYu07UmMPwFr8O6qQwmgXbn6zq8nk1F5imwNfn3fZp4lyxw++ABeegneeUcdv9tucOaZsOOO4DgmJc5wsrVTV5x5wiyYqnRkvpPQtCDw1Tk1PYsZ79gxaVmA2wxTb1AdbW67dbhHfB+2uAyKx634ByCEEEIIsZascWeb4zg8+uijjB07ti/vZ7U98sgjtLS0cPPNN1NaWgqA7/tcdtllnH322Qwc2P1opmw2y2233cZpp53WVupy4sSJ7L///tx1111ceuml/fMChFhPrO4IzDW9xoqEvgs1H+Mv+S/+4rcpW/52h1KJHfbVbdyiiSwOxlM86nuYg/YktFVgNFtDm+dBY2O78KZnCDM1xCJNeM1zMawomTRti3sTuOjNUzFiCXycLmE7m1XnMwyob3TwvCoMA+bOhWefhddeg9paGDECzj0XDjsMysrUcZqmjlueSoKdwLZrSGlZEnEbN5bE0B201mCuBTa5lI+9/EUSSyZj5BYW2jA6Cnf8xeSGnQGa+oG0H+0phBBCCCGE6N46zzxhAHUfQ80zBAuewah7nyI6Ti0LjRh+8rukKw7CTX4P1ypn9tSpVJdWY+U72lAZJpdTs8s8r2vm0bwmgnAuaL3PPLoOM2cWMk9jI4wbBxdeCAcfrNZ9W6PMky5c129dYtu21TlwbPx2PwvHaESfcgt8fS1kawobhh4MW14BZVut6o9ICCGEEGKt6FUZyQkTJjBt2rS+upc18sYbb7Dzzju3dbQBHHDAAVxyySW8/fbbHHHEEd0e99FHH9Hc3MwBBxzQ9lwkEmGfffbhxRdfXNu3LcT6wc+ooOJn8QIbjSSh3rlYidJ+BOaa6hJcc3UYy9/BqHtbrbdW/z/w0xiA0WlX3xpArmQSVE7CL9uFdHRbAnwVPCurMewYUAi3uZzq+MqHTpsaMrVTiTouRnYZYcsCfNPGSIwjlTKJx2ktc6JKlljxqg73GwSwfHkhBC5eDP/5D7z+OixcCOXlsNdecNBBsMMOkEiosJnLqfNms+rYlhbwPAeowjQhAZSbEI2rkJzNeASLXqBs/iVY7vy263v2CLJDTsYesTeUbY+l6Wha35a8EUIIIYQQYoOzrjOP14S57CWMpc9gLvlPW7WK9rt59kgyyYPIlh9ItnQP4sXq/vwcEHQtmZ/PPC0tUF+vOtG6yzx+ZgGaZWM4a5Z55s1TmeeNN2DpUhgwAA48EA45BLbeWq2ltkaZJwuNuSRWdg6G5mJZhRl2vg/RuIUfS6JroLl1RGbegDbtRnDrCzc7cE/Y6ipI7rRGPychhBBCiL7Wq862X//615x11lmMHz+eww8/HNPs1enWyMyZMznyyCM7PFdcXExlZSUzZ85c4XEAo0eP7vD8mDFjuO+++8hkMjhO93+AC7FByNRA41QIWxekzoIezoGialwj2WUNg24Xo14dYYiV+YZgwduqc63uvxjNX/W4ey46gVR8EunEJILySYTx0Xi+hmmqmVx2BNLpQvAMAjWqMwgKC37ruvo37mTQm6YSjbRg+Q3o/mK8IEPoaejN07HiE8hkA+IxNeLTjmXJWIXzui40N8OMGWodtueeg6+/hlhMdaydcYbqaCsrg5ISdf14XIVIFTTVedLpjmVa2gfKwE2jz7yHQQv/jO3ObtvHtYbRMvAUvPLdsRwHq6gaOyq/m4QQQgghhFip/s48qPO4y7/BXPIM5pKnMWpfRws71pYMNYNc8XdoKT2QxsSB5JxNsR0Nw2jNDk2tmcdWGSKvc+ZJpVRHm+d1n3kCL4OGhu6teuaZOlXlnWefVbPZEgnYeWdVKnL33VXeWePME0BTk/oCh4RVjd48FTPn4kTVmtaaYREkqrG1Rvj6Uph2C3jNhRMO3BMm/B8M2qv3PywhhBBCiD7Uq96xiy++GE3T+N3vfseVV17JwIEDsTsNA9M0jSeffLJXN7kijY2NFBcXd3m+pKSEhoaGbo4oHBeJRLrcb3FxMWEY0tDQsEadbWEYkkp1HXm2rqRb/zJPt/8LXaw135b21oIc2vJPISiEPtcF18vgt3xKOjoRN4h0OKaoaOVlIDsIcuj1n6DXvoNe9y5G3Tvo2WVEu9k11GN4pduRLd6JlthOpKI7kKOMpiZ1zbABzJY0pqlCXTarwqfrptE0ncbGdFv5FF2Hhgb1egxDhbowswg9twAtPY+c54PWgJarwYhYhPGhhG4dPg6ZLEQ1FbJzuRQtLapE5EsvmTz9tMFHH+kYBmy7rc/55/tMnOjjt64pUF+vQqfnqes2Namg2dSkOvzCUIVhTSuUrtE0MIJGyhbdQdlnN2N5S9vaJG2OY3HFRaSK98CxXWzbIYhX4LsRnHX0O+bb8t/3hkLau/9Jm/cvae/+Je3dv9bX9o7FYn1yHsk8G7dvS3v3S+bJC3Lotf/FWPwsxpLnSTRP77qLlcSt3Id0+f40xb9LjjI8T+WFIJsmrFcdZ6uTefL5wjS7zzymV4NhWYSxFWeemTM1XnzR4KmnDD7/3MC2Q7bbzufIIz223jrAddV16upUG61u5gHVrkuXtv4MXJXTMpkYtjUBR6vFJ4MdcdD0RoJPf0u44D40v/DfmD9gH9zqXxJU7KyeWEu/g74t/31vKKS9+5e0d/+TNu9f0t79a31t777KPGuiV51tpaWllJaWMmrUqL66n28913WZMmXKur6NLmbPnr2ub2GjMnv2bMJQw/e1tpGShhGiaSseKrm6x6zJNQCKzEbCxm86nUwjndHJZUEviVCT6tiJHY2GxONBj+c3/Ebi6c9IpD8lkf6UeOZL9DDb7b5ZYwBN9tY0OVvREt2KbGwsXhAhmwWvTieTqSWTqcP3NXI5nUxGw7IgFvNxnJBoNGhbeNxxYMaM+XiejqaFGEZILqfjeap9AEZVLMau+wzPzREEGhETYrSg4aI3NeJVVFLfrNrPcmymLqvixZfree21Er7+OoamwaabpvjBD5oZNqyFWCwkDEPmzAmxbRUcm5tB1z2KinJoWkg6ra7t+zqplEYQaLiuhu+rDjtHq2Nc6j7G1TyMRVNb29Trm/K5fwbz3L0JFxuw2MW2oaSkBdtuxLbBNNfkE4C+I79P+pe0d/+TNu9f0t79S9q7f61v7T1x4sQ+OY9kHgEwa9acNcoi3+bM057p1VLS8jYlzW9RnHoPI2jpsk+zVU19bFcaEpNIxybgBybZevBqalozj9arzOO6Gtmshm2HXTKPbUFCbyEMXLTGrpnni4XDePHlBl57rYRvvoliGCGbb97Cqac2M3RoC46jOtZnzVrzzKNpkM0GeJ7PsmXgujqRiI/n6TQ3ax3aaoj1MZvp91KeewWt3Tp2yxN7sLjiNFLOZrAUWNo/v3vk90n/kvbuX9Le/U/avH9Je/ev9a29+yrzrIledbZNnjy5r+5jjRUXF9PU1NTl+YaGBkpKSlZ4XC6XI5vNdpjd1tjYiKZpKzx2RSzLYuzYsWt07NqQTqeZPXs2I0eOJBrtbk6R6Ev59h46dCSa1rW9HYcuC1DnuW73i3X3dMzq7t+enpoFpV07wtJpSKVBj5dTZhQ60W1bnTMSaV3DIAzRUrNbZ629g1H7DnpT96EnRCMsnoBbujOZop3JlexM4AwDTSMGlLfebzqtRkh6HtTUqDCnRjuqbbYN0ahaJ8Dz8vebZuHChVRVDUHTonieKu2YHy0JKpAnjTSExW3nBEhEHYzcUsIwgLIS5tUM5umXhvCfV6r46usIkUjIxIk+F16YY7vtfBIJjUymiKamIpYvVyVTLEt9mSYkk1BRAVVV6hr5BcItS91vba0a7el4sxjafAtldfeiB4WRH6nEd6gfehEtRXuTaNEY56mRoZqmXlMioX628fi6W6NNfp/0L2nv/idt3r+kvfuXtHf/2tDbWzLPxi2dTjNjxhwGDBjRpb1XlkW+VZmnszBEa/gEY/FzagZb/YdddzFiZMv2JJfcn2zFfgTOUCygai1mHq81NwyOdcw8pgmxiIOWLWSeGQuH8vTLg/nPK1V8M8MiGg3Zfnufo4/Osu22PtGoTiZTTFNTca8yTz7DRCLqOMNQz3ue2jffcee5HqXNTzK4/iYSmf8V2lEz8YcegTvuZ9glWzBixT/qPiW/T/qXtHf/kvbuf9Lm/Uvau39Je3fV/4us9bHRo0d3WZutqamJZcuWdVmPrfNxALNmzWKTTTZpe37mzJkMGTJkjddr0zRtnU5V7Ek0Gl0v72tDFIYamtZzeztO186SfCDq6UfU+ZjV3b+rEvCXdXlW08CKgB8twTRjbcFJ13z0hk+ILHsTa/nbsOwtyCzu/tRGDJI7QnISVH4HLbkToVlCrkUtAt7d/1mOUwhg2azqWGpoUK8hv0ZbJALl5YWyKu3bIhqNYhgxcjm1LRotrGWg66Bppeh2EWaQxfPUem8Q4b0Z43n69bE8/daWzJobpSgRsutuGieeDJtsohGJmASBqco9GupckYgqnWJZhXUUiotVCcloVG2PRArhGIAwpMT9L8a0a4nVPYFGYWaaN/Agmkf8ilzxLuBBHIjYqh3yIhEVdPNrI6xr8vukf0l79z9p8/4l7d2/pL3714ba3pJ5Nm5BAJmM1mN795RF1vvM03qu/N/5AHgpWPwyLHwaFjwN6YVdLxMfBUMPIhh8IC3x3cFw0Oiae9Zm5gEItFIsuwgryOL7rR1ggc27Uzbl6TfG8szbmzN/oUNpacjuu2uccy6MG6dhmn2UeSi8pjBUxxYVFdo1m1X36nmgufVUZO4lseBGIrlZhddplhCOOQtjkx9jxoet0w+s5PdJ/5L27l/S3v1P2rx/SXv3L2nvgl7/7ZLL5Xjsscd4/fXXWbBgAQBDhw5l99135+ijj+6yJlpf22233bj11ls7rN323HPPoes6kyZN6vG4bbfdlkQiwbPPPtvW2ea6Li+88AK77bbbWr1nsWHzfW2F212360hJ1+1+356OWd39u7CT0DynbaHwPE0H3bDAKSHW9B5m7esYta9j1L2F5jV2e6rQGQyVkwiTk/DKvoNftBW6aXUIrG731SQ73K9lFUY75kN1Prxpmgpqvq/2jbRbWiF/DdMsrBOgOthU0AMIrCil0XEETTN477NK/v3KWJ57azRLahNUlmfZe2+XX/4aNttMw3HUKMtsVo0uzd9XNFpYQyESKcwycxx1b5pWuK+20B94mIv/SWTGtRj17xXaTDPwhhxDbuzFBMVbEo2Alim8XsuibXH0MFRtUVqqri2EEEIIIcS6tKZZZL3LPLEkTjeddVp6HsHcZwjnP4W+9BW0oOPUulAzCCq+QzjoQPRhB6GXbgKapjJPbsX3uzYzD62ZJ1s/k7c/GshTr4zh+bdHU9sQY/DADPvt47HrnlBdrRGJ9GHmacc0VadcJqP2a79PURHklnyMPuOvRJc8hB4U1lxz7RFkRpxPdMLpmNGinhtRCCGEEGI91quPbhcvXsypp57KrFmzqKysZMQINbn/66+/5s033+SBBx7g3nvvZdCgQX1ys9057rjjmDx5Mueddx5nn302S5Ys4U9/+hPHHXccAwcObNvv5JNPZuHChbz44osA2LbN2WefzU033UR5eTnjx4/n4Ycfpr6+ntNPP32t3a/Y8K1sQe2wm/L/q3vMmlyjA8OB4mponKrCZ+BC49eY9V9g1E9Dr38fze+65gCgSkKWfQe/bBJ++STC2ChcT3UwWhYQALnWkomt5VJCL4ORqwE/C4ZNYCYJdafttWQy6l9N61j+MV92xPfV41xOfZ9//S0tEAQ6qZTqnMoHv1xOLdKt62qfd98ZwGsvRHj1rd1paLIYPqSFww5YykH7fsM2W7aQciZSV6+CbjqtjndddZ18W3qeCp+OA/X1atSmbavQaBiFkaiRCFhhA+GMu4jMugE9PbfQdmYJueFnEY77McSHYbYbRavrhRIy7V9/PthKR5sQQgghhFgfrGkWWeeZp5VpWXix6rY8Qhig1/8Pc8nTmEuexmj8tOu1rDL8gd/DHXAQXuV+EClr2+Z46z7zNDbCGx8O4PUXHV777x60pEzGjGji+CMXcfC+jUzYNEWL3ceZp7WDrrP8wMFIRL1WLchgLf47+vRbsGvf7bBvrmhHmof9DKqOoKjExFwPqngIIYQQQqypXn18e9lll7Fw4UKuv/569t9//w7bnn32WS6++GIuu+wy/va3v/XqJlekpKSE++67jyuuuILzzjuPeDzOUUcdxQUXXNBhvyAI8POLNbU688wzCcOQu+++m7q6OjbddFPuuusuhg0bttbuV2z4VraeltbNxLfVPWZNrtGBn4GGL2HJy7D4Faj7EIIMnU8bohOUbINfsTv6oN3QB+5Ki1feYZ98cIRC2ZG8TAYMtwa9fipBrhBwdX0OFFWTIdll1GP+HIZRCH3ptBqxaZoq/NXXqwAahpBKBeRyKoRalhpJOXcuvPQSvPoqvPUWZDIRqseXc8pxi/jeXkvYYpNmTBM0QwXtbJODbavz50eGWpYa6RmGKlR6XiFYxmLq/vLrOuTvK8EsnK9uQptxJ45XWEsyiI4kN/p83OGn4SSKui0FaVlq9lo2Wwit+fUi1tUabUIIIYQQQnS2plmk3zMPgJMEKwHZQieYbiexXA3mP4O5+F+Yi59Czy3tcqif2Axv4EH4Aw/CLdmZlrTZ7frJ6yrzzJoFL7wAr7wC77wDrhth8wmlnHvKAg7cawnVY1JrJfPEYoWM4jjdr6kXi4GVng4z7oSZd6v2bxUaUfyq40kPO5egZCJRyTxCCCGE2ED0qrPt3Xff5ZRTTunS0QZwwAEH8NVXX/HAAw/05hKrZMyYMdx7770r3Gfy5MldntM0jbPPPpuzzz57Ld2Z2BgZxoqHWPbU0dLdqMDCOQs17vOhbLWuEXhQ+35r59rLUPMOBN3UdtQMKN+OsHJ3vPLd8SsmoUVK2mZfZbs5pH15l3wplyBofT7IoKen4lguHcr5By5B41TcSAJwOtxvJFIYYel56t9sVoU7XVdBMJFQozhVMNQwTbUY99tvw7PPqrDpebD11vCjH8E++8DIkSaWXonpa2hGFt22wU7iu07b6NAgUMGwoaGwqHd+tGlZmfq3okJdP78YOWFAovlF4tNvxlz6DBqFn3+Y3AVv7M/wBx+GphvErRWHSF1XAVbWFBVCCCGEEOurla0h3NP2tZ55ejyxA7EqcJtg4X9g3r+wFv4Hq93gOIBQtwiTe5AbcDDegAMJ44U14PNl8duXrlwXmWfJEnjzTZV53n9f7bf99nDRRbD33lBVZWLpAzF9o28zD4WBgPn98z8Dw1D7hSFofjPWosfRZ92t1vlur2gcjPsh2uiTMSNlSLFIIYQQQmxoetXZFo/HKS8v73F7MpkkHo/35hJCrF1+psMoR+ykCmO9oGlhYUHtTnpaxDs/KjCVKoQuXVfhxbLUKMfODEONdOz2GloI9V/B4pdUB9vS18HtZs013SIs3wG/Ynf8it2hchesaEJdG/XVXnelXNo/F4bq/t1MBt2twXAXkUstxLdLsOxIh1Ivfs7FNGqw4lUd2iQf2HxfBbpcToW6/BpmhqFCaDwOc+dqPPlkks8+s/n0U9Vmu+wCl10G+/0/e/cdJ0dd/3H8NTM7264muVRSSeAIHQERKdIEAf0hTcQu1YoK2BFRERRBFCyAYkFRqVJCURQRREABpURIgPSQkFzK9d2dnZnfH9+b23J7l+Ry2eQu7+fjkcfd7s7Oznxz8Lh3vt/v53OMCYnFgd4LkmTDySRjEDgQLwrxUf+DdNrcRxQ+6+rMZ9XVmdfGjjXHBpn1BK/+CnvBT7A7Xil8iGXDlJNhl/Oxmt5ScRxFRERERKpmiDOPyS6VFxj2l3cK7xvCzLMxO6EyqwmW3kO49I/Yq/6CVb7gMD4KdngXTD4Ba8LbyeTreieXikWZJ8ozngfZ7gxWrgU3vwKv+3WoacCJxUvy0eZmnnQaXnvN4u67x/LccwnmzjXHH3oofOc7JvPU12/BzBMUTaQVlcAvZlshibZ/wmu/gCW3QL6oHYHlwA7vhJ0+CROONFlJREREZITarMm2k046iT/+8Y+85z3vIVW2FaOzs5M777yTk08+ebMuUGSLybT0qd9Px2JT1z/ZtFmndl0TADcUTPoTlUSJSjS6rql1b+dLewCkapK9pUWs7iW4a/6K/cZf4I2HIbOywokdGHOACTrjDsNreAuZfLrwegC5zkKvtXL9TRRGwhCCrhas1nlkuj2S9nqczHLC7Epyqakk6xtMvgrNvcXcLIHb93yOU2i+XRxWYzGYPx/+9CdTJnL+/BTxeIK3vjXg0kvhHe+ASZPMe6M+B+WrZ6OeCFC4x6hBeDRZaNsmZEalUmpqoKHB/Il1vADzf4y98DfYfqGpN4mxMOtsmHUu1EztO1AiIiIiItW2hTKP44TU1PT0KhtE3oFBZp6N+ZzulbDkdlh6O+Gqx7ApXTEYJCcR7nAizrQTYdyhYBcCid1Pn7jo8yyrJ2N0tOCvnUeY93Ds9ViZ5eSzKwnrp5Kqa8AP2KzM8+KLpkTkX/4CCxemSCbjHHpoyEc+Yqp2jB+/hTNPrHCd0U6+PjqXwqKbYcEvoX1+6Wv1zbDjGTDjg5Ca2M8JREREREaWzZps22WXXXjkkUc49thjefe73820adMAWLRoEXfffTcNDQ00Nzfz5z//ueR9Rx999OZ8rMjm8zN9QyeYx23zTF3/zdzhNmAwKRMFzPL3RP274mELdsc8CIp6AAQvEq5cQaL1X2YHW8erlU/euAeMPxImHGXCpFtX+MzOym/JZHr6CISlq2Bdt4kcpeNSXA7GJkPYNo9st7nO0ImbYBr40L2ErNtMbX3Pcxbk3coD5Dj09kPI5+HZZ03YfPBBWLrUrLg87DD4yEeyjB27kF13nUoyGSMeN70NamrMn0ymbx+B+vpCWI6+5nImULquOTZa3ek45njX8Uiv/iOx//wYVj9aerFjDoCdPwVTTzUrhUVEREREtgVbOPNsSt6BQWYeezGB3UyibgMTg5kWWHYnLP6DqeoRmtmrqK1bULMT3sSTyE84kaBxf7DsQv+1op1/rpXAC5oI7cqZx3XBy2bI90y0QWnm8duW4CebiSd7ajZuZObJ5eDpp+Ghh8zCwhUrTD/nI46AT34yQ2PjImbPNpnHcbZQ5nELO+76lV0LS2+HRb+DVY9CUQl9YrUw7b1mkq3pLRvZVE9ERERk5Nisybbzzz+/9/vrrruuz+srV67kggsuICyqHWdZFi+99NLmfKzI5su29A2dkdAzr6cnV+1yvH4uJQjAIYO/bh62ncXufAV7/b9w1v8bu30uFhWWXtZMNzvXxh8F4w8nSIwvlGkJwO0p19LfZ0bynS3Eu0vDuW0tJlnTTCYohN2oHAyAlWkh63mEoVllacdqiVkJ7DCLFfjYfit5fyxxG2KuSy5WOTTn8/Dkk3DffTBnDqxaBWPHhhz79k6OPryNgw8KyNlNLFoSsGpVYQyiHge+b7JdTU2hr0I+b/oOFO/ay2ZN0KyrM+/J50szYVN6KTXLb8Rd8jPszOuFF+wETD/dlEMZs9/AAykiIiIisjUMx8zjlB0UeISt8yBdYWIwtx6W3QWLbyFc+RBWWFpvMmjYG2/CyeQnnkhQu2ufyR/Pg0RYuvPPBpLBYnKJZny3NPM0NprMEHa3EOb7zzx+phWSY4GBM08uB//4h8k7DzwAa9fCpIkhxx/TwdGHt/GWA0IybPnMM3p06eRncV86APLdsPxeWPw70/MuKPs7GneomWCbegrE1EZEREREtl+bNdl20003DdV1iFSXn92814dYpV5oAI73BvEVfyDRMge37d9Y+da+B8VHm11rE44kGHcUXmLH3v4HYMpCFsvlTPjq7zPBlG8J2+eB23cVrNs5D2dULV6Q7C3lErVmzKzO0h2YEOc4EOQDvORO2J2v4JDFCXNm8aPlQm0zBEm6uwqrOR9+GO6916zmbG2F6dPhtNPg+KPXs8+Mudh45H1wfKBzMeNHTWX1ajOZn0gUJv6i8yUSJmRGJW6iMiueVyg/E00UBoFpQB4GedLr76d+1Q0k1z5QMqEZpqdh7fxx2PHMzS41KiIiIiKyRQ2TzGPbYPkthL4HFXZVWRRNDOY7TQ+2RX/AfuNBrCDXc4zh1+1GftJpeJNOI6jZecDNVaGfgY6+O/9itoftzcNL1RJayZLSlUEA+XVm3PrLPPRcU6XM09VlSkPee6/ZxdbZCTvvDB/9KLzzmPXsPnkuBD2Zx4Mgs4UyT0+Oi1X4F6EwBIK8aU2w6Hew9E7It5ce1LArTH8/TDsdamf0P8giIiIi25HNmmx785vfPFTXIVJdGyr3V+VygL09BwIPZ92TOKseJLb6Qepan+1zbIhNULc7fuP+xMbvjz3hCKjfCc/rKR3Sk+2CwIS3Sv3XMpnKwar3evItJtRWEnrYXguJCqtg46kEtl167pwXw07thhN2EEuNIZfYgWyiie6OJK2tJmTOmQN/+5u5rj32gM98Bt71LhM87TCDvX4uge/h501fAccBLI+waz7jxoynocGEy1jMhMuuLnNcuqcdXWenCZuOU2jCnssVQiaAk1nC6GU3klh2I05uedF4W/hj305u+idxphxPIjlQXRURERERkW3Etpp5yrgu5Duz/U6MxewA3ngE3vgr4ZLbsfMdJa/nUzuZybXJpxHU7977fC47cH832+t/55+NZ3a9pUozj21DsiZBB/1nnkTNGLLxHcjZJvOsWWMWE86ZA48+anLJfvvBV74C73wnzJjR06uuCpmneKIu0luIKPBwWh7GfeN2WPFHyK4pHZT0ZDO5Nv390LinykSKiIiIlNmsybaBrFu3jptvvhnLsvjkJz+5pT5GZHASTaYxeKVwZbnm9WrJrMZdfj/2kjnEVv8ZK9/W55AgPo6gcX/8xjfjN7wJYrXE42DHgFiqt/9BsahMS2//tU1oVo6fJTbQnFLZKtho5WTGbyIWX0wu5/VmL9+H7u6ARKqBTLgXLUuS3HefWdH5xBPm9f33h69+1YTNPfcsXGsQQL69BWyzyjWWKryWzkMu59GYWkcyWWgsnu25tOjzs1lTkgVMEI1WgCaTEOTzpNbdR2LpDTirHsAq6jngxyeQ3eFMgh3PJEyb1ZpR6wURERERkW3etpR5KO31XMy2wU0ksEurQGJ1LyGx5k/Yq/4C2VXmuZ7XgtQ0vEmn0TX2NLoT+4Blmf5nZZ/XpyRikRibtvMvyjxZmrBji/G9ypmH2F4seSXJ3XfDX/8K//63Oeatb4VLLzWZZ5ddqph5gtJJx5K/hyBHvOUvJFtuJ7byLixvXekYuI2mN/X098O4Q8DalFApIiIisn3ZopNtP/rRjzTZJtsmJwn1zX0bhluueX4zGoVvUBhC64um7v3yOdDyJDZhSTAM7QT+mLeRH/sOnEmH4wQdBPk8VggxC2LR5FlPSK7U/6C4TEulkGlZhUbaUXCM3lNjJ/DKJu8su+hzi1bB9u6oA7JeEruumbg/Dz/nmYbgeVjTVsv9D+zCA39O8uyz5hz77Qff+AYceyxMmFBoDl58rbYNcTsLFSa5kkmgFaywcKH5fOH1dNrcT0fRwtd83gRUJ7MYd+GN1Ky8ETtb6MUWYuE1HUPH+HPIjHknNXVubygtXwEqIiIiIrJN25qZp4JoV1X5IkGAVGMTjrWYfFcL9qqHsVf9Gbv95ZJjQrcBb+Jp5Kd8CH/UW8Gy8LqBngxQnnlsu/RxceZJJsELEpTPt21M5sn5SZxRzQRr5mFTyDwr19Tx5yd34d4Hkjz/vNmBduCBcPnlJvOMGVPdzAPmmlOpss8Ls9S1PYSz/DaSLXdj+2WtCtxGmHyC6cE24e1V3wEpIiIiMlxtscm2SZMmqaebbNuSTeDWmvr/ftaEiETTlgmdfsaUPlk+B16fA52L+x5TM51w0rvwxh1HMOZQLDdNPFqBmGkhPkBIDvpZIRoJw76vR70H8nmzCtL3zXFhCDm7iVjbYvA9HMcEs1gM8h7Eky6xnlWw5TvqbNu81xldy6KX1nPf/S5z/lTHC3PjuK5ZzXnJJXDwwdDQYI5Pp83KyljMBME+19pPuHMcqK2BsL3w9xVNFjY0mPNls0WTjmGe1Jo5NKy+gcTaB0t2sQWJiXhTz8SbeiZhejpOAPWOOUdxjwYRERERkWGlmplnI7iu+T3e8wrlDV3Hx37jYZj/Y+Ir/wRh0RY3y4HxR8Kss8iMfhf5sPS6N5R54nHzea2tpsyi45hraGsDgsFnnrzbhDOulpefX899D8S5/8+1vDw/TjJpss7ll5uJttransm0eJUyT4Vx8H1IxDLEVv6J2Ou3E3vjnj7VVEJ3FEw+EWvaKWa8HZX0EBEREdlUW2yyLZlMqqebbPucpKk9vyV0r4TX7zMTbCsfgnxn6euWDU0Hwg7vgknvhIZdsSyr0oLGDYbkShNBxeVBwrAQwmzbhLZYDNavN39iMfN8a6s5Lh5P4gbNxLPzCPIeiYQJc47rkks0Y1tJbCjZUReG8PLLcPvtcP/9SV55ZQKpFLztbfDhj8Jee5kdbGD6C3R1mdAZTfCFobmOePkADFD+JpFyidfVUFNT6E1n2+Zc3d09gTaziIY3bqSh5UZi3orC9WKRG/MO7J3PxZlyPPgxYqEm10RERERkhNmSmWcQenecdS2D134Br/0cupaWHtSwmylfuONHoWaqeV+W3v7UkQ1lnjA0uSPqWR2GsHq1Od5xkliDyDzPPw933AH33Zdk8eIJ1NbC4YfDxz9p+k+PHWuOrWbmKRaVlrTy7STW3k96zZ0k1tyPVdbrLoyPwZpyIkw9FWv84WCXNfoWERERkU2yxSbbRLZHVudCxq39LYlHn4S1TwFlywrdepj4DtjhnTDxWDOJtrEGCMmV+h9EZVo6OgqBE8xxnmdWVHZ1lb4W1f5fvx6CoImG2lrSiRayYZY2ErjxJsgnyXeYVZq+D888A3fdBffcAwsXQl0dHHoofOxjcMAB5nOiwJfLmWCdLSvXks8XSsrU11e4737K34T1M/FWraK+3uyQy2ZhzRog8EiumUPt8htIrf9TWS+2SXRNPJOuiWfi1E9j9OiewK//G4qIiIiIbFlBHl5/AF69AVbcD2HRlqzkOJjxYfOncbc+b93UzJPNFnJIpcxjJuKaqK8ZOPPk86bX9B//CHPmwLJlMHq0yTwXXGD6T8fjWyHzFJ03l+vZwUYL9W33kG65k8S6h7DCsgFLjIUpJ8HUU7DGHdbTBFxEREREhoJ+sxLZHGEI61+AZX+EpXeSWv88U8qPqZ1pdq/t8C4Ye/AWKcnRX/8DxzGBLLrUXM4cY9tmQs33e0JZovS9mYx5b8ZL4jMZ3wenDWoDM3n2wgtw330mcC5aBE1NptH3pZeaXmxBYEKfbRe+j8fNeaPP7+42gbl4hWcyaa4n1vN/pt6+CmETdl0trt+CHRZ29oXZADDN0vN56Fy1iNrFPye94hd9drF1Nx5L9+RzyY4+rjdUNtZpB5uIiIiIyBbXuQReu9H86V5e+tqEt8Osc2CH/xswK21q5okmoRyncubp7DQTZP1lnmeeMZNrd90Fr78OEyeazHP00bD33ub8lTJPd3ehh1q0yDG6tqHIPO3t5lyeZ86RyC8lvfouatbdSbrjUSyKJjCBMLWD2cE25SQYe4gm2ERERES2EP2WJbKpwgBanuydYKNjQZ9D/MZ9caadApPfbVYoRssch4KfqVhOMup/kM0WVjZGvRBiMfOns7MwuRQEhXr+UbmVqNa/bRfe7/smMK5aBY8+Cg8+aCbYRo+G//s/OPFEs6ozCrNRsI3HTej1fRMIg6DQL8GyzGrOMDTHNjaaHXFRORQobUJuJMkxubd0itEFYZ5wyV0Ei29i1Jo/l+1i24GuSWfSMe5MnPqp2Da4PaUi6+pKG6aLiIiIiMgQCjxYfh+89jOzm6246kdyAsw8A2aeCbU79n3vEGSeKNv0l3ksqzBpFWWe5cvh7383mef112H8eDjhBDjpJHjLW8yxxQsYyzNPNmu+j3bVRdVAHMfkn0Fnnp5ju7p6SuV3z6d21Z0kW+4k0fHvPsOXT+9EbtxJxGacRHzCfqaFgYiIiIhsUZpskxGrd4VgT8mQzerDFeRh1SOw5A5YdhdkVpa+bjkw7m3kxh/Pyx27MGvPw0hHyyuHUqYF2uYR+B5538z7Wc5iYqOasdNN+L6ZvPL9wi6yfN5MKkU9DKJ5P9s235eHzSj4ZTImYP71r/C3v8HSpSYgHnMMfP/7pheb6xbeF5V0iYKt45jnbNuEzO5uc9yoUUXDZvWsxkyUPlfehLxkCHp23dmdr+G+/FP2XPArXL9QRyXEpnvUcbSNO4fM6GNpaIyR7vl7TyTUk01ERERERo4hzTxDpWOh2cG24BfQvaLoBQsmHtOzi+2d/fcIG6LME42D4/Sfebq6zATbX/8KjzwCK1aYRYXHHgvvfS8cfLB5f/S+4sWJ5ZmnpgbWrjU72aLdbNFnxmImS0XXtNGZp+f4MID86v+SWv0ADW/cidv1vz7v8ev3xptwEtbUk6B+V5Jxa+v/LIiIiIhsRzTZJiNS3xWCJgSVrhDcgMCH1Y/C4lth6R2QXV3ycmgnCMYfjT/xJMJJ78KtHUOuq4vuufPo7jbhqL+wO6hQ7GegbR55zyvtVeB75FfPw26qpaM7ST5faABe3JfAtgulRmzbfPX9QikW1zXPzZ9vSkT+4x+wYIFZqXnIIXD++aYfwYQJPY3DHXPuqMF3FGzD0Jwv2rUW3W8UatPpQrkVMJ8fXVsiYa7D69sXvOdEOWIr74IlN8Dqv1L8V+knJtMx7kzWNJ5BPmGaqOOZnXT19Sb8aiebiIiIiIwUQ5J5NqA8txR2ldlks4Xf5Qk8WHaP6cW28iGKd7GFyUn408/EnnUGdv30gT9wCDNPLFaYCCvPPC++CA89VFhUWFdnFhO+4x2wzz5mR1tDQ2Gh4sZknuh6+ss8xaUjB8w8PbycT6LtCdyFt7D74jtJvvJ6yeshFpnat9LeeBK5cSeSHjdDmUdERERkK9Jkm4w4/a0QDAIz8ZJKmZBTcYIrDGD147DkVlhye98dbG49TDqe/KSTyNQfhk3GlDbxuulel6Gj24SvqKRipbA76FCcbSHwvT5NwQHyOY+uVS3k3ckln118vijcRSUeo9CZy5meAvffDw88AM8/b8LhYYfBZz4D++5beH9U8qT43qJz1dYWyrCk04V7jIKwbRdWc0ZhvTecY94bPY5WjEasjvnEl/yM2NJfY+cKk54hNuvSh2DtdB5MPIHVLU6fsYmCcJ8m5CIiIiIiw9RmZZ6N5GUyeJ2FUo7dNNGVTfZOwOVy0LXqNVKv/xxn0S8h80bve0Ns/HHHkpt2Dv64Qs/kpFfdzBPlC9uGdetM5rnvPpg3z0ywHXkkfPnLZoIt6mddXLljUzJPZ6c5btSoypkn2k3XX+YBIPBwWh4mtuJO3DfuhuwbuNC7yDC0YnTVHUHHqJPoaDwB350AmDFQ5hERERHZujTZJiNOpRWC5RNciUTRBFcsND3YltwKS27r27A7VguTT4Cp74GJxxBYCXLrW7Db55kVnEAQgp9bjBWfShiW9mcrLgGyoVIhlmUCXpjPYOdbiJHFdnt6FPhZ8n7f94WWTeh1EA8W9TxuApK99x2P99T179nJFu/pOe77cO+9cPvt8Pjj5vqOOgo+8Ql461vN2ASBKf/Y0mJeTyTMY9ftG+iila5gPiudLgTUurrCGESrOfN5Ezgdx/ypqSkEZdsG/AyxlX/EXXwDsTWPlN5zeirWrLPJTHwvr7zazvSmZpzAIZEwk53FLKvvSlIRERERkeFskzPPJu50C7pa8Fb3zTvx2mZau2M0dT5E438uILH2b6VvTE8m2PEsuiacQZia0ue8g8k8lm0T5jsIczlcVpB3mgiCZMl9D5R57rsP7rgD/vUv8/xxx5kJtv32M8dHE4fr1xd2xA0m8zQ0FCb2KmWeRMJknmjys3cSNJpge/1W3JV3YXlrS+4/dFKsS74FZ9r7yI8/mY7cKGUeERERkW2Qfg2TEad8hWD5BFe0otBue55g7m8JVtyC3b2k9E1OGnZ4F0w7DSa+A2KFovtedwaKJtoA/DyEvmd2YMXG9LmmqETiQKVCPM9MFKXtFmifRxB45DGBMOYuhngjYfmOL/IE618xb0zsQNidx40thmQz3UFT73HptAlg+bxp+H3vvWZVZ1eXCZmXXgonnwzjxpU2/Y5KpNTWFkJkPG6edxwT6Lq6CitmLcsEyKhJuWUVVoEGQaGhd++49awedd2icietLxF/9We4C27C9op6sVkO+fH/hzftHJLT3o4Vcwi7unCcl3v/nqOG6VGotSwTeqNyLiIiIiIiI8HGZh4wv4NHk08bVcLez5Bf1zfvWF0LSC/7CaPW/hkn31L4LGyCie/E2fkcmPgOPM8hrLAzDTY981jksdpewc9mwQcr4RHL5IjVNdNGU8m5o8yTy5kebHffDX/+s/nMAw+EK6+EE080Pdk8z+xE6+zs+RyrMHEW5Yio95vrmkogqVQhb1TKPNFYR7mpd+x6Mk8iUTrB5rY8jLWgnwm2WAPs8C6sqSfS3XAIC+YvZcrEXbCstDKPiIiIyDZKk22yzdqYvmYbc0zxBJedXU56+e9IvvFbnLbnS44L7ST58cdjTTuN2NTjIFZT+cIyLSXBM7oOMBNuSau9z1ui0FOxVAiFcJyIZaCzNNiaPgMedq4Vyw7BNzvnLNvGanuF0MuC7RC6DVh5cPDId8zDra0lm0/S3Q0vvWRWdN5zj9mlNns2fO5z8Pa3w5QphQmxqPRJNDEWNfMOQzO2+bwJdrFYIchGAQ8KfRKiibPiHgZQKMlSPi743bDoDnjtBlj9GBYQ7Q8M0jPwpp6NN+UjhMmJpuxK2f+5omvJ5wv9FMBMBkYrO63SDYciIiIiIlvdlsg8UPjdN9rtFi3+g43Y7ZZtIfR7ThjkcNY+hrtiDm7Hf0sO85NTyE87B2/KR4nV74CTLFxvf/e6KZknyjv4WZMbejIPeQ+nax5uvBYvSPZml+eeMwsK773XlNLcay+46CJTKnLChNLME4uZ7BIElTNPNFZRvvA8k4NyOXN8f5knHjcTc1EeiV5PJiGXMRNs9rLbYOkfsXNrKTqM0G0kP+HdeBNPxZ1yFG6iaAYPZR4RERGRbZ0m22SbtDF9zfo7pjjYAIS5dlIr7iD9xm+Jr38Yq7hZt+WSazqWYMp7yY9/J8TqAKixob/FnnaYpbyao22b1Yrm9b51IqPQUx6KrcCUTvG7stj5BPh5vKyHEwO7KCjlfYjbOWI148m3rYPAw/I7wM9iOQ7EpxISJ5XqaQhueyxZvI7f/XEic+bA4sUmYJ52Grz//WayravLjF8uZwJnFDLjcTPGUZiPrtmyTDnIKMjlciZgFgc61zXnikpGFt9vPm9Wg0bfhyGk8/NoXHkd8WW/xvLWFQ1MDCa/m2DmOXijjyTExrX6/sOC50FXl0UYmtWlra3muWTSrEwtPnaomsSLiIiIiAyFocw85RNc0e/z0XvLdzwVl7rvw89iZZbgLp9DbPWfsPJtvS+F2GQbD+dl6yQm7vNB0jUmPxVngqHKPJbfavrFQYXM45F2Wnj2lcnceadZWLhihVlIeMYZJvPMmmWySaXME4Ymy0S9pcszT7RzLLqv4vvrzX3l5SB71NebsQ9DsEKPxszDpJffhrvij312sOE2Ek5+N/mJp+KPOwrLiZNU5hEREREZljTZJtucDfU1i2rk93dMLgfxWB5/+Z9xl/2G2pV3YwXdJcd4jW+lc+wH6R53Km7NmEIJw+j1opWf5Zx4gvJqkE6ssJrUcvq+MQo9rlsoKeJ4pnRKPufR1WFCWyqxmtAdRaY71vueIDA9EmIO2LEE7vh9TaPyrkVQswOW3YCXiROPQ963mfOXJm66bQKP/HMUySQcfzx897tw8MGFngMdHYVSke3thWtKpwtlZqKJNMcxQTEWKwS56B8Biu8NCg3Ao/Ervl/X7QmpQZ761nuoWf4TEuv/WjpQtbNg1tkw48OQGo8N9PPX0OfnJBYzwTaT6fuPCVETchERERGRbcGQZJ544Xft4t91o999i/t6Vdrx1Cfz5Lth6R0w/0fE1zxVer2JiXSPOo7M6GPJ1u5N6/J2JlpO7+vFmWCoMo+/9jnIjQUnXpJ5MlmHO+8fy2/uHMM/nzITUCecAKecAm95ixm74pxTKfPkcuZrMlk585iddoVxK888xRU7+mQeQuKd/yT1xu9Irr7VjEExtwGmnAhTToUJZoLNBSrNkynziIiIiAwfmmyTbc5Afc029LrVMR936S/MTqnMypLX/JqdyE/+AN4O76fLntlb6qM44EXlWaL+X5XCip1qIp5cTC5TuBC7p05/aLlksrUlxxeHnmgyKttl+r4Fvtcb5OyegBe0vkIusRvt7QGpVE9Jx27o7oK0myBVk8SJTyYfA8hjAfP+V8ev/jCB2+eMY32by1ve1MrV313H8SeOJp0uXEtrqwma8bgJap2dphF49DifL4RF2za92mKxwiRdsViscqCLeghEgdVxevoUtL9ObPHPqHn9Zzi55b3Hh1aM/IQTCWd9jPjkw8DauIRY6ecg+uzotWiXnkKniIiIiGxLNifzFIt6h0WTc8W/+xbvdhsw87TNhdd+Bgtvglyh2kRoOfijDiY//p0EDW/C923wXazUGCyrsNutPBMMlHksy2SDsOMV8jW70dERmBwVgp2BXBaS8QTJmiRO/Q7kg24ITYn55/7TwK/+MIE/PjCOzi6Htx2c4dprzeLC4pKOG5N5bNvkG9cdXOaJKoJEfdscB8L1c3GW3kx8xe+JZRaVHB/GGshPeDdMfQ/ulKPAKdua2A9lHhEREZHhQ5Ntss3pr8Z/JAxNQItq7NtBJ+mW24gv+wWxtY+VHpxogmnvJT/5A3Sn39y7NNHuWeUZBafy8ixRLf+KvQycJLFRzdit88h7HoSABcm0Syw+k7C9BdftP/SYcNRC3vHI+eZxImF2lHXnG3ByK/GtDrLZNF1dJkglk+DlXda80URdFpqaYF1HE7+90eOXvx/H/+bXsMPELOd+6HU+cMpKpk3NEzTsS2fRPQUBdPds8ItWuQaB+exstjA5BqXlJKMVnul0ofxjbW2h50EljtMTeMMQWh8hnP8TWPZHrLBQgNNPTMabdg75aWcRJidSU0OhUdtG6O/nJOqfEI2riIiIiMi2ZpMzT4VebWFY2jusfLIoOrZS5rH8LuwVtxG+fgOs+2fph9fOhGnvwxq9P3asDtsHO4RYwiXd2Ex7zuwwi8fNZF+lTFAp8ziOqbCB3YCTX4nX1UFbe7q3okY8DlnPZX2siVofGuqaWLV6Bb++pYlf3TKB1xalmDG1mws+voT3n7KG8c27E1DIONG4bkzmcV0zvv1lnqhPdXmZxkhv37b8Elj8B1h0M6wv7Qke2Gly496NP/l0gvFHgx03mWcTJsWUeURERESGD022yTZnQyvy8nnIdIeELU9Rs/IXpFb9Adtv7309tByCCcfj7HQGTDoObJcYUBMUVh5GKxdtu3IJl2iCrd9eBskmbLeWeLbF9BFwEmZiLxsQi60imRw49NhhlrgLYWB2xQWhmbPLB3FITsXBJ5s1fQsScfAClzDdTGtHkj/9BebMgb/9LUksNp0Tj23h+994laMOXWdWtFoumUQzazqSdHebEBntLiu+v1zO3LvjmF5qUYCPx01pkqgPXSxmvrquCep1dYXebP1xw/UEL98Er/wUu/3lkjm0zKij6Zr0cTJj3gl2jKQDdYMoebKh49UcXERERES2VRuVeTKF8oTQt59b+e+7xTue+ss8sY7nSa/4GemVv8H2W3vfG9ou1uSTYNY5MP4wU23Cz2BnW4gX5x0nScLqwnUDEomB76M48wB43eDGwcvFCeNTCfM+YQgdnVBfB/nAJUg3s3ZNknvvhzvvTPLYY/uRSgac+q7V3Pj9lznkLa3YjktQ20xHPklnW+kYFe8EGyjzJBJmIi2a1CzOPI2NZpy7SzsRFP1FrMVdcRss+R2serTkpdCK4TUdQ2fT+8g0nUDo1ACQ9KGun4m7gSjziIiIiAwfmmyTbU5xzftyQbaV+LKbGLXkepyOuSWv5VM74007A3/Kh0iPmdhnxWDxqk8wgSqTKZRRyefN11Sq9H399m9zkpCeXPZk10bdIz193Swb8MHPm/4EThK6Mw34yWnEcHGDLL6V4JU3xnLnjQnuvhtaWmDPPeHyy+GMMyzGNNZBdgz4teAk8OwmstkknZ09K0d7WJa5P983wbK49IhlmXGvqTH3H4ZmPKKVnI5TaBYejUUy2XeS0m79L6mlP8Za8jssvzAWgTuKrvFnkJ9xLlb9TgQeuGGhP0JU9mZTbKj5t5qDi4iIiMi2asDME/R/TPFiwEq/71bMPB2d2EtuYcySG0i0l/Viq9mZ3LSzsXb8MIn6saUnq5h3NkFR5vF7SvhHmaetrYGwdhqxeE/mcRO8smwst/4kwb33mlKQb34zXH21xUc+6NGQzINfD85YPLuJjJckDE11kCjzJJMmw3jexmUeMMdFmSSanEwkCuUje/NOkCP2xv3Elv6K2Kr7scLS+o5e40HkJr2f9sZTiNePxXHA7Zn0VOYRERER2T5osk22uOK+AMXlTyo9D4WVmLlc4Vi79TncRT/BXX4zll/YUhXYaTLj3kPXhDPJNRxEPGHR0LBxKwajlZ9dXeZPPl+YkMpmTanERKJv4+khkWiCjsXEHI+8VwjUlgXxpMt6ayJrM0kefRTuvhueftqExeOOg/e8B/bd11xfbS0lITgIINNZOFexqJdDFL5TKXNMe3uhNGRtT7u5jg4TMLu7C4E9asAe/Z30rpzN5rFev5vYaz/Ebikt45mrezOdkz5OW+NpEEvhOlBD38nLfic0BxD1gqhEzcFFREREpJqGIvNEisu7V1rg5nlsXOZZ91/cV28gtuhmLK/QYy204nSMPoWOCefgTjqURNLaMpM2RZmnuBxilHlarYm0dCb529/gnnvgv/819/XOd8L73gd7791TXaMmCYm+eSc6VySTMRnGsjYt80SLLqP3RBOabizEyf6H4LVf4yz9HVaupeT2vPRudI9/P93jTsdPTSeX68mTGTOhp8wjIiIisn3RZJtsUeW90MAEyvKyhlAoS+i6PasO7Sz2kjtILfsJsXWPlxzrN+yLN+1cshNOw6OeMIS4ZSakNiUoep6ZUIrKtIB5nEiY6xw92kwyRfoL0RsSvS9aaRkESVynmXhuHjHX6119aTkuS9fM5vpfJrnrLlizBnbZBS68EI46ypQ0qa8342NZfScCo1WbnmeCpe8X+qzFev5rTybN97W1hTI0vm8eR73qot4QUSiOxqSurigkZtdiv/ZzEvN/DF1LCvdqp+hsOp2uHT6O37Cf+fvKQD5bWFlaHjIHO6HpupBOh729FqLVqgqdIiIiIlItm5V53MLvx9HvtNms+R0+Oq64NKS1ocyT74RFv4dXb4C1/wYKbZGziV1Y3XAOa+o/SKymyZxjXWnmGWzeKX5vpcwTj3u9ZRktx2Xh2l25/pdJ7rvP7GLbay+4+GI45BCTd5qaeo4tyzzFZSL7yzxRb+nBZp76+EqCRTdjL/kVduuLJQVTwuRE8lM+wNq6D9Cd3JNYrDA+UbUUZR4RERGR7ZMm22SLqdQLLXq+tbUQ6KIyhdGxsdxSEkt+irvk59i51YU3Okn8ye8lM/UTBI37m/cCxRlmU0pzBIFZ4Wjbfa8zap7d0WEmuKD/EF3cN6GS6H2eZ84XnSORaCLp1pKyW3Dqstx9XyO/urmRvz3iUFcHRx8NRx4JM2aYQB1NsEGhxEn57rUoKEbhOJ2u/HeQTBZKp9TUFEJsEJh7qtR/IRqTVG4uLLkWFt4EfqGRQZCcQveUT7G64SxyjDb36JUGwSgEl9ucXgOWFZJI9L/iU0RERERkSxls5olKQRaXfeyt6rGBcvgVM0/rS/DKdbDw1+AV92JLkB3/HlqbzmF57qDeX7z9bOEaoswz2LwDG848yVQLfpjjngcb+OXNo3jiCZvGRlO544gjYNaswn1ZVmGhYHnmKd4hVynzRGOYzW5a5rGCDDXr76V+za+oaf0TFkWzpHYCJr+b/LSP0F1/FFkvRmcb5HOF8yjziIiIiIgm22SLKV51WKy4bGMUPnM5SHQ8TcPK75NafStWWAg3QXomwcyPE9v5I1juGILOyueFTd/VFq1kjMqzRL3KgqBQZsT3K0/IRYr7JpSLwncQmHsuPkc2C6tXJ/n97ydz883wxhuw//5wxRVw2GHmfG1t5jptu1ACxXEKvdR679fPQLaFWCZLGCaIWU3kSRKLmWOjwBePF3oXVFoVmc2a6+zTPyIMqGm9j9GvXEOq9S+lL409hMzUz5CfcALd2ZhpW5crnC/qf5DLFVbjllOvAREREREZjjY185TvZis/VzRx018/Nyj63TnwYNldMP8nsOqR0oMadiU//Vy6J3yAbn803V2Q7CrNPJ2d5vPS6cKOtEoGyjuw4czz+utJfvvbyfz+97BuHRx8MPzwh3DAAYWdf93dJjOkUiabRRmtPPM4uRbCbBacypkn6rVWX78RmScbkuz4F/VrfkXd2j/g+OtLb6zpQJjxYZh2GkGske7Owv0Wj4Uyj4iIiIiAJttkCypedVj8XFQ+JAyBMCC55l5GLf4+qfZHe48LsciPfxfe9E/gj307btwmljA72Sr1LYBNr1kfhaQgMMEokSg0145CXT4/cNCN9Fd/v7isYxRew9D0YLv5ZnjoIRO+TzsNPv5xs4ttzZpCEB8/3oxX1OA7kTCrMl236H4zLdA2D0IPJwAvA3FrMUGsmZzdhG0XAn5NjXlP9LXSmBSvlLX9NupbfknjqmuJZ18reiEO098HO59HrmYf8rnCuEUhMxL9A0MUmstDpnoNiIiIiMhwtVGZp+j5qMxgpZ1P0XNRn65+M09mmSkT+erPILOy8KLtwpSTYaePw9hD8DIW5MHOVs480Q6y4om3/gzUb6xS5gkC+Oc/4be/hUceMZNfp58O555rMk5rqzk2ymOJhPlaX2/yQipVOfPEfI98z7hUyjzFOaffzNO9irrlv6Fp2Y0kMi+V3os7mc5xHyKxy4dIjW8uPJ8tGmZlHhERERGpQJNtssVUChPRLi3L76R+za9pWHk1se5Xe18P7Bqyk8/En3UeYc3M3ueLVwZW6ltQXrN+Y3oNlDcuz2ZLQ1EUorLZDQcj3zfHmf5vdu+Oue5uE8JyORMo77rLTLK98oqZWPvKV0zoHDPGfFbUJ8D0rMsQC1poqMkSWAmcmibcRLJ3ws22MTva2uYR+B55H8KgZ6wCj3huHn6yFh9TayQKeAMFveiea6zlpJb8kIaW63H8QjN1Pz6BcNYniO1yLiTHmbEuVJLsXYVb/I8D0T8axGIwapT5jP7+3kREREREhpOBMg+U5pjiMoOVygFuMPO0/Qv7+athyW1QXAkkNZVgx3OxdzoTOz2+z+f1l3mKe5tlMgP/bh6VXyz0vK6cedauhdtug9//HhYvhuZm+Na3zOLChoZC5kkmzfFR5rFjPZkntRGZp2dnnhMrzTzFOadP5gl8WPkQvPZzksvuIRUWtiQGdoqOxpNpa/owXXWHU1fvkGosvf/iSVVlHhERERGpRJNtssVUKn8SZtczavmPqF3+A5z8mt7n8/EdWDf2PLomnU190yh830ziRBNi5SsDy/sWFNvYXgPR9dXWFlZ3FqutNV+DwLwelSEpD0qeZ0JrImFCXzYL69ebcwcBzJsHv/ylCZ1dXXDoofC5z8Gb31wo22JZhbGKxcDJt2B1zCPMe0S5zvUXUzOhmWRtU+Easi3kPa/i7jvX9ognW8jFJptz9nP9Je/pfJ76uVfhvv47rLBQRyZb+2Y6Jn+G2IxTqGuIU9wl3C77PgqdxaVc4nGoqxt4tayIiIiIyHBTKfNEu8hyuULvMSgtM+g4JjcULw6smHlc35SKnHc1rH6897UQC3/cseSmfxx/3LFgOeBD0iucJ7o2266ceaKdbmCuqb29kJnKM0M+X9jBVinzPP88/OIX8Mc/muOOOgouvhj22st8Rjw+dJnHssCJgZ8H1/VoTLUQJCf39rguuf7OxfDaL2HBL6BrqXl/z0u5+gPpGH8m7aNOJXDqsSxI95SkrPR3Ufy9Mo+IiIiIlNNkm2wxxSHEyq7GXfADahb9CDtf2CmVq92HzikX0D32VPJBHItCyZXi80R90zakvwblUNprIFqVGa1ArK83/dGi1Ye1teZrcamXaLVm8aRd9Hk1NYXPCUOLzk7405/gN7+Bv/8dRo+Gk06CY44xO9qisBmtIq2rK9yna2ewsvPI5ssaQAQe8ew87LAWenarBV62N3QGoQmcvT0EYpB2siTrNzBoYQgr/wIvXYm98s/Eo6exyDSdSMeUC/Aa3koyCenavn8Pxf/AEK1ujVZyJhKFEjDR61rVKSIiIiIjRaWSj7Zt/jQ0FHqSFR8LG5F58t3w2s/h5e9D56LCgbEawh3PpHNyaSWQSJR5oJB3cjnz+3hjo5kgC0NzHamU+czod/RoR16lzBNdYyQMLdrb4e67TeZ56ilTHvIDHzATbVOnVifzBCEk7Sx2qugcfhaW3AOv/tzsZqOoZmeiCWZ8CG/amXRYu5odfUVvTSYL/bGLKfOIiIiIyIZosk22KNd7ndj8K+HV67H8rt7n82OOIDPrK2TqjyDEIm5BqicU+n7fkhsbasod6a9BefHr0fmg8BmOY8JnFAajVZfR50W7wjKZ0mvxvNISJZ2dcMcdY7nnniSLF5uVnN/7ntnFFr3flF0xE3zRNeTz5vUggETYQohHMlk6FrV1ELM9yLZAerIZR8yyyfLecr7fc6/5BOn+BiPwYPEt8NKVsP65wvNOknDGR8nO+By5+E7Egdq4CZGVxj/6R4P29tJ/ZIj6NUT9FypNVoqIiIiIDHdRnshmCxmieNdYcSnIVM+kUL+ZJ2jHfu2n8PJVkFlV+JD0VGj+NMw8i1zYSDhAX+mursKiwuj8UW4ZN67wfDQRV1x6MXpfceYp7zHX1ga/+9047r03yYoVJutccw286U2F+9gqmWf9XHjtRlj0G/P+XhZMPBpmngk7/B84CVygMSj8nYGZHFTmEREREZHB0mSbbBndK2Hut+HVG7CCQiLKj38nnTO+SmfyLSSTkCgKIFHgi/XzUzlQU+5IpQblxXy/b5mXqKxKZ2ehL0B5n7YoAEd9E6DQ4yAIYPlyuOEG+OUvU7S1pTjiCJ9LL7XZbz9zbDZrQll9faGsTLRyNQrclmWe8/NZbAoTf9FnJaItZ36hO3cQayKwFpPL9Z1ltByXbr+JZPnKSq/NNFSf90PoWtb7dBhvwp/5KezmT2Cnx5IkWku6YY5j/sTj5u8w6ulQaaJ0YydORURERESGC983Ey/RrjYw+SKZLM0w/Wae3DriC6/BWvhD8NYVnh+9H8z+PEw5CWzzpqBsV1yxaMKnuCdcVIK/fIdaeeZJ96zSK54crKkxx+XzsGABXHcd/OY3KbLZJMccE/ChD9nsuWfhfFXPPHgES+4jfPrXWGueKH0xPQV2PANmfpQgNc309M6V9u5OpQrXtiHKPCIiIiIykGE/2fbwww/zgx/8gIULFzJp0iTOOeccTj755AHfs2zZMo488sg+z++1117ceuutW+pStw/ZtfDSFTDvGvBNCgyxyE88hdxOXyFo2BsbqOkp4xgFFtcthLj+FK+m7M+GwkwuZz6juDdCFIiTycKEXvGkXfHOtSiouq75+vTT8IMfwF13mXB66ql59tlnIfvsM5lkMkZ3d6EnQ1QyJZ02gbKry1xPImFCpm2b0ipeW4IgMO+zHUj2lCXpvTenkNatWJJ8qhkrM4/QL4RPy3EJa5vBThYmKTOrzQTb/B+B19p7bFCzE7kdL8Cb8iFwUn16PWyMaMdg9A8J5cG9fKJ0YyZORURERESGg0ql7KPdbhvMPPlO4gt/SPzVK7Dyhd/RGXsI7H4RTHi7CQtFBso80URZeT+4KPNEk33RdUeKM0/0e7rrmuP/+U+Tee67D0aNgo98JM8eeyxgjz2mbLXME+uaR3LtfcTXP4ztdxYNjgs7nAAzz4IJR4HtmJ7eRYfA4HafKfOIiIiIyECG9WTb008/zac+9SlOOeUUvvKVr/Dkk0/y1a9+lZqaGt7xjnds8P3nn38+BxxwQO/jmuLGW7JpvHZ4+WpT7sSLerJZ+FPeS2bmxQR1u5QcHoUUxykEkA1NlJVlzIoqNSjvvUSv0MA7UhyyokDsOH2DaTHfh/vvhx/9CP7xD5g+Hb79bXjf+2D9eo958woXEIVNzzOlVBIJEzqjgB0F4ai8CkDgNuHGFhOzPdPku/jzLdf0GSi631aribC+lpjfAkEW7AR5pwmfJDUuhJ3L4MUrzW42v7AMNmw6iMyMz5Mf/66yD9n0lZjlOwrLH5dPlG7MxKmIiIiIyHDQXyn7ATNP4OEu+Tnx+d/Ezq7sfU8w7mjsPb8K4w7t9/MGyjzZbM8EVtHv8cWZJxYzO7M8b+DMk8vBHXeYzPPMM9DcbCbc3vMeaGnxmDevcNPVyjykIb3yFyRX3ESsc27J9QZ1s7FnnQUzPgjJsYXnN7Kn98ZQ5hERERGRgQzrybaf/vSn7Lnnnnzzm98E4C1veQtLly7lmmuu2ajJtmnTprH33ntv4asc4QIPXvkpvPit0rr4k0+APb9FLrEHwUbuVhsoNEavb0ilBuVQCEKxWN/PKO9HEO1c6yxb/djZCTfdBD/9KSxaBIccAnfeCccea4JltLLRskISCXMdQdBTJsU35ywuPQlmAjHqU9DbS85K4oxqJp6dZ8aXnl4KMRe7vhmcQk0Y2zarRtvakvjOZHAK15v2XyH1whW4S38NYdG/AEw6Hnb7Mrn6g8gPMN6bshKzPKCWPy6fKN2YiVMRERERkeFgQ6XsSzJPLCRYeCuJl7+K3fVa7/P5MW8ju8vlpKYcCBuY/Bko89h25UmeKPNEu8v6yzzr18MvfgHXXw8rVsDRR8MDD8Dhh5tMslUyT+t/GfXK9TjLbsb22wv3a6fwJr6X/PSziI0/kESyb8jYmJ7eyjwiIiIiMhSG7WRbLpfjqaee4sILLyx5/rjjjmPOnDksW7aMyZMnb6Wr2w6EISyfA/+5ENrnF56fcBTseSk0mR2Ddk/5kv5WThYHkP5CI5SWNdmQ4pItUa+BqHdBPm/OHzUtj84ZhayoYXf03lzONAC/4Qbzp60NTj0VbruN3n5sYAJlVC4lHjerNlMp8/6onr/rQmNjIXR6nimhEouZ14uDoB9rIkjVYudbTL8CJ4GXbiJR3HyhRzpdWEkahhDreJ6axZfjvn4rFlHyt2Dqe2C3L8GovYGBez3Apq3ELJ8orfS4/HgRERERkZEgmljaYOZZ9xz2058mtfqx3vf69XuTnX05/thjSKaszc48QQCtrYXrKM88dXXm+/LM09Ji+rH94hdmQu3974fzz4fddy/9zKplnnwXLL4FXr0e1jxFcXzI1+5OZvK5+FM/gJ1oNNcWp6JNmQjdEGUeERERERnIsJ1sW7JkCZ7nseOOO5Y8P3PmTAAWLFiwwcm2Sy65hM997nM0NjZy5JFHcuGFF9LY2LilLnnkWPdfePYCeOPhwnOj94N9roDxh/c5vHy1ZHnpxmKVQmOlsiYDqRR0OzoK1xH1DsjnC73XHKew2jKa7Fu6FK65Bn7zG3MdH/0oXHABzJjR9zOj5trZLNTU+CV94OJuBq+9hUQsS8JKkI83EYsl8f1CM/AoHBePQ2gn8eOFn2G7n5WR0e623OtPkHj1MmJvzOl9LbRcrB0/BLO/APU793nfQDZlJWb5RGnx4/KJ0k2ZOBURERERGQ4GzDzBWvj3RWbiKDS/9Ic1O5Lf7VL8HU7DsW2SQ5R5urvN46h8fnHmqakxr3le4ff2V1+FH/4Q/vAHc73nnguf/SzssEPfz6xG5nHa58Lc62HhTSV9prETBFPeQ/fkjxGMOhAsq3cD4ED5QplHRERERKpl2E62tbaaX7zriwu/Fz2OXq8kHo9z+umnc/DBB1NfX89zzz3Hddddx4svvshtt92GuxlL0MIwpKura9DvH2rd3d0lXzdH2PUGsf9dQnzZb7AwSwCD1A54u34Df/JpptB+0b0HgQmdQWACWel1wejR/dfPL+b7G3+NxcGx+DoymUKwy2ZNEM1kzIReQ4P5Go+bUPrSSxY/+pHLXXc51NfDJz6R54wzPKZONYGpv7/eIDDj7Dghtt1NPg/xcA2xjvnEA4/AAy8DtuOSatyZbmcM0V+LZZkgHDUPrzQu8XjllZn2midxX/42NasLk5+hncKb/lH8WZ8hTPeE17ILD4L+7yW6pk0Z++g9xROltbWFXXfRxKnnbbicy8Yayp9v2TCNd3VpvKtPY15dGu/q0nhX17Y63ul0ekjOM5Izz0A71Po7vt/M0xUwofOXWPMvAW8tAKGTxmv+AvmZ54GTgDAD/tBnHs8zVTmi37tHjy6t+PHsszY//nGM++93GDsWvvAFjw99KM/EiVsh8/gZkqv+SGr5jcRbnyj9vNqdyU8/k/zU90F8NGEAea+7ZGHmQPlCmUc2lca7ujTe1aXxrj6NeXVpvKtrWx3voco8g2GF4bbTtre9vZ1Vq1Zt8LgpU6bwwgsv8L73vY9bbrmlpO/a2rVrOfDAA7nyyit517vetdGf/cgjj3Duuedy9dVXc9xxxw3m8nnhhRfIDdR0bLgKfcasu5PJLT8mFnYA4FspltZ9lJam92G5fUsbAuTzdm/gDEML37d6A4njhCSTIbHYBup6bMplhhZdXX2XJprrMM8HgcX69Q6ZjNVbMiQeh9Gj88yfn+a225p48skGxo/P8Z73rOKYY9aRSAS9qzhtO+gN3o4TYlml//n4vkUmYz4rGQ9Jd7+I72Vx4xD4FtkcWICbiNOV2oOOLgfHgVgsxHEgl+t7zkg6XfpaTfdzTGq5gfqupwr3ateyuvE9rBp1Ok5yFHHasIMcgR0nRz3Zsv55xddbLJkMcZxt5n8NIiIiIjIE9t13380+x4jNPAzud+P+Mk+Nv4DZbd+gIfdc77Fr645h2djz8Nzxg77Gzc08L7xQw223jeU//6lj8uQM733vKo48cj2xWFj1zJPIv86kjtuY0HUXblBYLBsQY33dEaxuPJmO1JsG3H6WiKHMIyIiIiK9hiLzDNY2tbPtwQcf5KKLLtrgcffffz8NDQ2AmaAr1tbWBtD7+sZ629veRjqdZu7cuYOebANwXZdZs2YN+v1Drbu7m0WLFjF9+nRSqdQmv99e9zTufz+L0/qfwjknfpCOmV8nlZjIFArlSPp+tlm52B/XNeU1hko2W1ozv/g6fN+sPFy3zgTNSBjC88/bXHWVy/PPOzQ3B1x7bZbjj/cJgtHAaKCwcrGurrT0ZVQapvBZ3by+dBGTxqRIhWshV09g15DLmeWSYU8pl7wPTfX1kJ5YMnaOU3llZfHn2GuewH35MpzinWxuI97MT5Hf8eM0xBtp9NZgtc3vbTYOWbDXE9bvTOiOKTl3cb+GwZTt3Jo29+dbNo3Gu7o03tWnMa8ujXd1abyra6SP90jLPFDYodafjc48gUd6yQ+oXXAZVmjCSVC/O7k9ryLZdDCbO2qDyTxBAE8/7XDZZS7z5tnsuafPz3+e5aijAvL5JqAJqFLmCUOSrQ+TWHw9iZb7eyumAPjpHfFnfJT81A+QTIxjygbGwlLmkS1A411dGu/q0nhXn8a8ujTe1aXx7mubmmw79dRTOfXUUzfq2Fwuh+u6LFiwgEMOOaT3+QULFgD06eVWLZZlbdWtiv1JpVKbdl25dfDfr5i+Aj0ByK/fm8wePyEYfSDFc2RRD4ByZtVi/x8Rj1d+38aoVN7Fsgr9AMqvI5Mx1xKLmf5mlgWPPw6//CW89BLssw9cfz0ce6xNfX2iJGgHgQmu8XihLj+Yz89mC/dh2ybwJbtfoCaYQDJYQ5BbTc5P4NTuRNjzn1sQQqYbrBjE0uk+IS+VKgTlkiC4+nF44Ruw8qHeY0O3EX+nz2Hvch7xZCNxAD8DHUsg7gBO6cmzS6B2LDhDOMu5Ddjkn2/ZLBrv6tJ4V5/GvLo03tWl8a6ukTreIybzFMlmTU7oz8ZkHnv9sySfOxOn7b8AhHYCf/bXie1xIUl701sVbG7mCUN45BGTeRYsgAMPhF/9Co44wqG+3qGzszCJtsUzj9+Gu+wm3IU/wumc13vdITbBpP/D2vkTOBOPxLFsonnCAUt6KvPIFqbxri6Nd3VpvKtPY15dGu/q0ngXbFOTbZsiHo9zwAEH8Kc//YkPf/jDvc/ff//9zJw5k8mTJw/w7r7+9re/0dXVxR577DHUlzr8LLsb/vUxyKwEIIzVk23+Ft70T4Dd90emv0KkrjvwZNtgW+NV6lGQyw3c3Lqrq9Ag/OGH4aabTDPwffc14fPAA00ojervF4tWqkahtqur9J47O80xSTeD1TafIG/qyARWnGwW8vkslv8KVuNuWGGAH618tRN4Xt/Q7vtlz/UzyZbb8XPkZpwHbiN4kHR6xjTbAqG5iSAwK0rDwLTUizkedrYF0pv234eIiIiIyEhWqTdysQEzT3c38fnfJP7a97BCs7srP+ogsnv9nNSEXWAQO6g2J/PkcvDggybzLFkCBx0El15qso/jVDfz2JmlxJ+/muTrv8byO3rPF8bHYM06C2unj+PUTNvo++/dZafMIyIiIiLbmGE72Qbw8Y9/nA996ENccsklHHvssTz11FPMmTOHq6++uuS4XXfdlXe/+91cdtllAHznO9/Bsiz23ntv6uvref7557n++uvZfffdOeqoo7bGrWwbMqvhmfNg8R8Kz007ndxuV+E5E/t9W3+BL1oRWR6SwDw/mLIdUePvSqLyi8XnjcJmLAZz5sA118Brr5mgec01cPjhhRIrjgP19ZWbjUfXG62uLJ4Mi0Ko19mC5ZvAl/chpAE/WEkQ+GY5aFcHlpsmCMByXPJOE3aF0N4batc+A89dBCseLLxWPslWJJMx92D7JvhGzccLAwR5D9xUFleLDURERERkJAh87JbHsf34ho8dwIaySb+Zp+Uf1D55JlbHfABCp4bs7O/gTf8EyZRd1cxj23DXXfCjH8HSpfDWt8JXv2q+VjXzxJI4654itepO4u1Pl15/w5vIzfg01rTTSNZULjc00P0r84iIiIjItmpYT7btt99+XHvttfzgBz/g9ttvZ9KkSVx66aUce+yxJcf5vk9QtFRx5syZ/P73v+fWW28lk8kwfvx4TjnlFM477zxilWpyjHRhCEtuhac/ZVYIglkFuP/1sMNxuAHkBuhfMNAONdc1YWhz6uMXlw+JzlPp/bZtzl+8ArO7G+64A669Fl55BQ491ATOXXct7GSL1NaaP65rVm5G1xuLFVZ65vN9g3bvYz9rjgsts+oyEYeaqdC+BAIfwhy5XJpY3CVMNeOTxKkQ2u32l+DfF8PS24sGshF2+Ry56eeRo7HfsfI8SDiJ3sBd8Rg/gRMMnx4FIiIiIiL9Wvhrkk+dya6xifizHoP0zEGdZpOrcnjt8N8vwys/JvqVPhh3NN4+12PVTqemipmnsxNuvtlMsi1ZAkcfDd/5DsycWeXMk+/GbZlDfPUcYtmlve8NLZf8pPeQm/EpgsYDwLKIDxC7y3fdVXpdmUdEREREtjXDfmbpyCOP5MgjjxzwmHnz5pU83pTecCNedi3869zSiZ1Z58DeV0C8Adj8HWq2PfjebJ5nSphEwTObNUEvnS4NvFEodRxzTUFgJtm+9S1TLvId7zA92fbaC9rbC43MYzGzyrO2FhoaCtda3OQ8Kj8ZfR8vWzTbex1OgjAEPyhKpvEG/HQzTtAK6R2wYhPJJ5rI5ZOl7wWsrkUk5n+D2LKbTA0UgFgt7PI52OV8iDcSdAPFDdjLhCGQaCIfLAYqpFTbJYg1VSxfKSIiIiIy7KSnAJDIryB44mQ4+jFw6zb5NJuUeZbfB//+OHT1TCjFR8Gbrsae8SESA9V57MdgM08+D7/7nSkRuXw5nHgi3HIL7LxzdTOPZQXE254i0XIPtt/e+7wfn0DnpE/ArHOwUuMrn6+CjSrpqcwjIiIiItuYYT/ZJpth5cPwxIege7l5XDMdDvg5TOg7eTkUO9QiAza6LpLPQ0uLCYm2bUKi75vVi74PjY3m+eJ6/q4L99xjAueLL5pJthtvhH32KZy3sRFSKXOeeBzq6grNvqFv0C5+nEqVriItDt5BrInQdsl7ZpWnY4MTg1g8judPIp/YA58krlVoOG7bYGVWEn/l27iLr8fq6TuAnYCdPwm7fgmSY3s/b6PK2zhJgtpmWD8PgqLwabtQ10xoJ/vtOSEiIiIiMqxMfDte85dw530Hu/U5eOwUeNvd4CQ3+VQbzDzdb8Azn4EltxTeNOVk2O9HkJpQcq4tmXliMVMu8rLLzMLCk0+GL34RdtmlcN5qZB6/bQmx9ffgrvlzIccAXs0edE+/gPwO7wU70WdibUMLNpV5RERERGQ40mTb9sjPwfMXwUtXAj0JZNY5sM9V4NZu8O1haP5kTZn8AcNjuQ02ui46bt06syKz+LhohWU2a/4kEoXzPfYYXHklPP00HHIIPPQQHHaYCa7FbNsEyFQKamoqX7fjmBAbrSpNpUxvA8+Djo7Kk405P0mY3JnQeh3fN8d6HsRTLonRzYRhEjs011xbC2TXEvzveziv/hDL77lIy4GZZ8LuX6vY0Htjy9tYySaCxlrsfAv4WXASPcHY/KPDIBbcioiIiIhsk7xdLqJ1xYs0tc2BlX+GR94Jh961UdmmPyWZJwyILf0VsRcuxMqtMwekJppJtikn9b2eLZR5wtBknCuvhLlz4Zhj4Je/hLe8pbqZx8l1MK31JzSs/k/J+fJNR9A57cvkRh1JImnRWFu4z01ZsKnMIyIiIiLDkSbbtjdt8+Dx98G6Z83j+Gizm23KiQO+rTgwFn8fBcZK4bHcRjW6tgvHVQpYUfjM5QpNwP/9b7jiCvjnP2HffeHuu80km2WZ1aCbWgKz+P4cx3yNyq+kUuZrpYbiAPnYGDI1u2PV1WO5gJ2g22kiGUuS6PmsmkQX9ks/hP99F9tr7TmDBdNOhz2/AXWz+h3DjS1vY/5OkvjxvhN20esiIiIiIiOCZbF4wkU01jjEVtwNb/wVHjrITLjVztjo01TKPPH1j9G48AJirf8uHDjrXNj7OxBv7HOOLZF5LAsefdRknv/8x/ShfughOOAAc3xVMk8YYq1+mLpXLsNd+3DhacslO+5kOqZ+Hnfcm0xeoXSCb1NLOSrziIiIiMhwpMm27cmiP8C/zoJ8JwDB2CPJ7nsTds0k3AGaRxcHxvLwWBwYi7+vZKMaXSc2fByY/gWvvGIaf//5z7DbbvCHP8Cxx5auYAzDTSuBuTHhuNL5oh4HngdZD4LkRLJ2uvTe4j6plTdhz/1aoXQnwA7/B3t+C0btueEbZ+PuZ3P77ImIiIiIDCtWjNz+NxF74TxY+GtY/zzhA/uQ3+sa8pM/iO1YA+6qKs88+ZbnGLXom6Ra7uw9xq/dheyeN5CcekjVMs/zz8Pll8M//gH77WdK5h92WOlxWzTz5EKsFXOIzfs29tqneo/LW7V0Tf4YXVMuJIj39GPrubehyBvKPCIiIiIy3GiybTtghR7ucxfAwuuAntWHsy8jO/18vLxN0GqCSFTHv1xUviTqOxCGpcGluPH0QE2og2Dg3gVRTf1ol1g8bhqFl1u+HH74Q7j9dpg5E37xCzjppMphKpp4i5qAb8jGhuPy85WXbXFdE/A8D8IgJLXuQdLzv4DV+mLhoHFvMytim96y4QsrszH3M5R99kREREREtnl2DN7yS2jYlfC/X8LyWnGf/jDhKzfQPesSMuOPIF1jV9zxlM1CtjuLu+o+EktvoGHdn3pfC2Kj6Jr5dcJZHwc7XpXMs3AhXHUV3Hcf7LEH3HKL6UddqTTiFsk88QB76W0k5l4G658v3F+8ia7Jn+S5zBHM2nk/Usl0b95w3f5LVg6GMo+IiIiIDCeabBvhrK5l7LzkbNyMmeQJ01PoetNtZGsPIFMW6tasgTFjSgON55keAvm8eZzNmu8TiUJZjuLG0wM1ofZ96Owsfa64/GRxSITCqshopWJ7O9xwA/z616aXwLXXwllnbVw9/40Vhd7+9Hd/lcKcbUOq+1kSL32eWEuh1Ar1s2GfK2DS8Vu8kcDGBm4RERERkRHBsgh2+QIdibeSfv6jxLpfJd76OPFn3k4+OZP8uONwJu6PXTsVbBdya/HXvYS14glGr/sbdn5976kCO03XpI/RPu2rxNKjSZZNmFWyuZln7Vr4yU/g97+HceNMT7YPfKDv4r5iQ5p5whBr2V3w8sVQvFAwNYn8Tp+ne4ez6cpZ+PPm9d5HlDfi8a0zyaXMIyIiIiLbAk22jWSdS0g+chBWrsU8nngMuX1/Sz5sItNZ+S3t7YWwls2ax8W72aLwlM0WSkYWzxdFJRXLV3KCCZ6VFJcqgUIPONuG2lozuXfTTWZyrasLPvUp+MpXoLGxcG25XN8VjIMpHbKh44vvtfg+o8e95+leTPLlb+Muv7nwZGoi7PFN2PEjZtWtiIiIiIgMuWwWOlIH07Hf89Qs/zF1Sy7Hzq8llnmN2JJrYUnp8U7Pn0jenUhr0zmsG/cpkg1NVck82Sz8/Odmos2yTN654ALzWlUyTxjirHqQxLyv4bQ+U3i6Zgb5nb9EfsqHwUkQ5AAqbMVDPdJEREREZPumf/EfyVb/AyvXQoiFt8tXiO/9DYKsg9fPRBuYENfVZb5ms4Wm3B0dpmdAPF44Np83j8tDVaWVnJbVt6Z+1OcsCEpXIkbHdXfD/ffD179uyqicfrr5ftas0hWjUamQqJxLdE0bCp2VAnIUevsT3WtxQ/GI70O+ax0z1l9N0/JbsEJzojBWizX7CzD7fIjVDHxRIiIiIiKyWbLZnm+cFJ1TL6Rzh0+SWn07yZY7Saz7G7bfWnJ8iE0uvTsdybeSGXsKftNhZLJm+m1LZ56uLrjtNrj0Uli5Ej7yETPRNm3a5mee/spZlmcep+VhEi9fhLPuicKT6SnkZ19M94QPmx2AIZA311SpDKV6pImIiIjI9k6TbSPZlJPJ7r2OhWtrmLrLe4jbDrY9cNmQMDSTXMmkCalR/4BYDNrazISb65qQFYaloSoe73+iqqurUHrSccxjzzOhMR4319TZWSiv8uKLcN55phH40UfDrbfCPvvQe/3lE13FpUM2ZqKt0mRZVN5lQ022KzYUDzzSy66j8eWvY+fXmbG0HJh5LtYeF0Nq/MAXJCIiIiIiW4aTonvCB+me8EEIQ9LOG7j5FRB4dGQbacvvQOjUkM+b3/PT3dXJPP/6l8k8zz4L7363mXCbPXtoMs9AeSfqL5174z8k/vcFYi1/6T0mTE7A2u2rBDueTXemb23G6N7icQvX3fiFjiIiIiIiI50m20YyJ4E//aN0dr/U+9TGBKHisiiRWMxMtEWlJGtqChNTxass+2PblDQSD8PSlZ1RWZbly+Hyy+FnPzNB889/hre/vfRcG9XQe4Ca/RUny3pkMubeamr6b7Jd/vnOqgdJzD0fp6MwzvmJ/0ds3yugvnngixURERERkSGVSBQWDfZhWZCcQOBMIAige12hB1u1Ms+CBfDNb8Lvfgf77msWGB50UOm5NifzbCjvOJkluC9cRGzRb7EwNx/Gmwh3/RL2zh+HWBovW/n90X1aVkgyqV5pIiIiIiIRTbZtZ2wb6upgzZrS54PArFDMZAq72mKx0lWbUcmRRMK8Vl9fOnE30I654lIllYKjZcH118O3v21C6Q9+AB//eOW6/wM29GbghuX9fX7564nEwOEVwG5/mcT/LiC26v7Ce+v2YX7tJ5lxwOnE0umBP0hERERERIZcIlG5WkWUefL5QmnHamaeIICrroIrrzSTejfeaMpGVloMuTmZp9+8460n/srlWAt/CEEWC0yZ+9lfwNrlfCy3dkg+X0RERERke6TJtu1QIgFjxkB7uwlJ+bx5PgxNQIzKpziOOTZbtKoxWo2ZSPQNheUh1PPMuXy/0Aw8CPoGt3//2/QleOkl+PCHzSrPKVP6v/6N2Zk3kM0NjnZ+HYkXv4G76MdYoRm8IDGB7C6X0TbmVDoWvzLwCUREREREZIuJFhg6TqFaRZR5EgmTB3K56mWeMIS//x0uugiWLoVzzzXfT5gw8D0MZKDM0yfvBDncRT8lPv9b2F7PqkvLgZlnwx6XVCx5v7mZS0RERERke6PJtu1U1Esgm4WODvN9tIuss9OEq2zWrLhMp02ADEPzfdSQu1y0ktPPZfC7WghyWTw/Qd5uwguSjB5tjnMcE85WrICvfx3uugsOOAAeegj22MOsQo2aeEeKm3tHj/sLgJV2wxUbdHAM8vDq9cSfvxgrtxaA0E6Q2/F8cjt9GWJ10NWF42iZp4iIiIjI1uS6ZsLN88xEWFdXoURkNNlWjcyzcKGZWHvoITj8cPjNb2CnnbZs5il+j/PG/SRfPA+767Xe5/yJ/4fzpu9Aw+wBx6+/3nTm/pR5RERERESKabJtO1fclwxMMIuCXy5nAmc8bv5EzbShcrizbUjQQvvqeQR5j2xP2RY3tpjUqGZyuSZc13zWL35hGoDX1MB118E732mejwJucePw4ubeUQDNZs3nRYE5Uty8vD8bCo4Vg+vKv8Izn4HWuURzcd7Ek8nu+j3C9IySz7csBU8RERERka0tKgmZzRZyRNSLeUtnniCAa66B730Pxo83k2yHH16dzOO64K1fROLFz+K+cXfv837j/mRnf4/ktLfBBjJTNEaVer8p84iIiIiI9KXJtu1UFOYymUJJlaiMiuOYoGlZJgTG44VQCgOEOz8DbfNIxD26fdPjwLLAcTzs7nnk3VqefjrJ5z8P//0vnHkmfO1r5rhI8bkzGfP+KOAVB1DLMitUs1lIpfpe40A2FBxLztG5FP5zASy5rfDcqL3hTT/AGfs23KLJStftvxG5iIiIiIhU19bKPH//e5IvfAFeew0+/Wn4/OdLS9Vv0czjZ7BfupKaF7+NFZgTBYmJZHe9kvwO7yWZsjcqM4H5rOJSnMo8IiIiIiL902TbdigICgEpClrRykkorJy0LLPzzLZNyLMs81qsv5+abAuh72FbEHOguBpjW2vAd67w+Pmvk+y2GzzyCBx8sClhmc0Wglt58OvqMq8VX3PEtgvHb+xEW6S/4Nh7Dj8H866GF74Jfpd5LjEW9roMdvwo2A42pryMiIiIiIhsW7ZG5lmzJuSbl/jcfAu8+c3wxBPwpjdVMfO8/iA8/WnoeBULCC0Hf9Znye9yMXa8nppNzEzR5yvziIiIiIhsmCbbtkOeV/g+WplY3BA8KqPieSYY1tUVwmZ3d2lplRJ+FssG/EJYBbj/r0186bKdaG1z+frXzerOKNxGZSX74/esFi2+5mLRClHP2/QQ2G9wXPEQPPNpaJtnHls27PQJ2PNbEG/ctA8REREREZGqq2bmCUO47d7xXPy9meR9hyuvhLPOKuxg2+KZp3MxPPM5WPbHwnPj3oa134+INe6u0C8iIiIiUgX6vXs7FDXcBhP+HKf09TA0x1iWeb081EWlV/qsinQSxBzT9yAIYMUbLl+7Yifu/tM4jn5bC9+93GPGrhN7A2f0+f1dY9TM3PcLZV/KRaE13IiWAcUNx6Nr6FMy8tnzYenthefGHgT7/ciUjhQRERERkWGhWpln8bI4X7y0mb/+YwwnHfcGl37LZ9LMSdXJPH4WXr4KXrwU/G5zTHIC3u5XEU49HTdubag1m4iIiIiIDBFNtm2HysOe45idZlGj7qgXQBT2Kk1kVVxVmWgiYDGB73Hn/WP54qU74QcW1176P045YR3Jifv29ksrLoWSy/U9d1Q+JZUyK0tzOfOe8nIuUYAdaKVo+TkjuVzPilU7Cy9/vyek9pSMTI6Dvb8HMz644ZOLiIiIiMg2ZUtnHj/vcdNtE7j4e7NIJnxuvOoFjj+mjcSEKmWeFX+Gpz8F7a+Y67ccvBnnkd35EnDrwYOcN8AOPRERERERGVKabNsOlYe9qA9APG4e19SUllipNNdUHEajFZn5fJLX1+zCF74QctcDTbzr6NVc8bX5NI0Bu7GZRDpJIlEafKMgGgXN4j4FUUC1LBOCMxmory+Ez/IA29/OtUq9DyLesoeJvfhxrPb5PTdrw06fgj2/oZKRIiIiIiLD1JbMPAten83551v85dFRvO+kFXzrC69RX29VJ/O0LyV89nM4y+8oXOfYQ+ja9ccE9Xv0uYd+d+iJiIiIiMiQ0mTbdqg87BUH0SjMFYexaCVkIWCawBb1J/B7+hXccgt84QtjsKyQX16/hlNPaMOKTSOINRHaycJ5/QxkW0zZEyeBm2jCqUn2ru6MVpn6PnR2Fq4rDM2Kz/r6Qs+36DXf73/nWnEJmYiVbSHxvwtwl91UeHLswT0lI/fqfWqDpSdFRERERGSbM5jMU/y7P5TmHd83E2K/+AV87WujqasNuf23LRz79i5wpm/5zBPPEc79Pvb/voXdU40jSIwnu+uV+JPfT0j/1Tg21N9amUdEREREZPNpsm075bpmwszzTKCLJs/KS51EQTQKhdFqy3TarAT1fRMGv/51uPVWOP54uPxyizFjxpBPjikJaWEIZFqgbR6ERd2/OxZj1zeTSDb1Brzy3Wi2bVafOo75E11/NBEYBdRyXV2F/ge2DW4sJP76r0nMvRDbW2OuK96E9aar+pSMHLD0pEqxiIiIiIhs0zYl8xQv3ivOPPm8OWbNGvjiF+GBB+C974Wvf92ivr4JL9G05TPPmr9gPfMprPZ55jOw8WZ8mmzzN8BtoLOzcE+VJssG6m+tzCMiIiIiMjQ02badCAIzOVa+WrF4hWO0ojEMzZxTMllo/J3JFL5GZVFyOfjnP03oXL8efvQjePe7C/NV5SsorTAD7WWhE8zjtnng1mLbyd73VuI45pzRVygt/1IsCo7R/Thd86ib/zES6x/pPSY35QzCva4gUT+mz3j1V3pSpVhERERERLY9g808mUxh8V555unogMcegwsvNO/75S/h6KML59uimSe7jMTcC2DJrb2v5UcdRHaPHxM07NV7jii3RCUyyyfL+mtBrcwjIiIiIjJ0NNm2HfB9i85OszIzUmm1YnkQBfN6R0dh1WdUysTz4Ior4Prr4U1vgttugx13LDQYh74rKF2/pW/o7D3Yg2wLbnJy7wRfJdH1lvdPKFccHGN2ltTC71K3+NtYoakd49c0k93zevymt1FT0/f9/QXf4tcHKsUiIiIiIiLVszmZp3gCrjjzdHfDN74Bv/kNHH44XHUV7LBDFTKPk8N99YfE538DfDMLGCbGkZl9BfnJHzR9pilknlisb34pnizrb4eaMo+IiIiIyNDRZNsIZwJY5aWMG7NaMQpnlmWCZD4PCxbApz4Fc+fCeefBJz5hyp0UrwwNAhNUw9Cco64O7Fw/W9Aifra3t0J3d2FXnW2bAFncs6B4dWal64+CY3z932mcfy6xrp6SK1ac9mlfITfrSyRSiZKG4+XjNpCBSrGIiIiIiEj1bG7mgcKkUpR55s41mWfRIlMy/+yzTQbZ0pmnvvthap7+FE7HS+Z4y4adPkGu+VvkaSw5VZR5ovOVZxTPg4aG/u9dmUdEREREZOhosm0ECwKzKy2Xs8lmqTixtDGrFYvr/999N3z+8zB2LPzxj7DzzqXlSaLG4h0dkEoVJutyObDDBAOW/XcKF1Kp5ElxWZhYrLQ8TNTsPBLm2miY/0VqXr+u97n86MNon30d+XQz8biZIOwveG4ojPdXikVERERERKpnKDJP8fGWBb/9LVx8sanccf/9MHNm4ff/LZV5nOxyRr9yIenVf+h93R99INb+P8EeszduALmyPtXFk2XRjr7iEpnp9MB915R5RERERESGjibbRqiodn82a1Zmep7pQ1BeRmVjViu6LrS1wZe/DDfeCCecYEpI1taa8zpO4bhodWd9fd9glw2bcFiMTYV6JZYLiaaSUij19YVSkJ4Ha9eawBg1Ks/nC/cTrS4FcFY9yOjnzsHJLDX36I4ms+uV5Kd8hJhlEcP0MxgoXFaawCt/XUREREREtp6hyjzR7/4dHfCZz5gS+R/8IFxyiTlXPF7IBkOeeWo9nNeuoW7RJdh+BwC+20R38xWE0z8Mlk3S65t5oJBniicYiycVo5y2ofse6HUREREREdk4mmwbgYr7lUWhKwqEmYyZJIsafm/MasWFC+HUU00plSuvhPe+t/C+ujoT4hzHhMVcrv8dY6GdJJ9uJtY1j7znEQamKkrMdbHrm8FJ4hVVXXFdc95s1vyJx82f4tAXlYVxXXD8dYTPnI+z+Fe9r3sTTyW7x48IE+NKrmVDwTEqxVKpYXh/pSdFRERERKQ6hjLz2Da8+qrJOcuXww03wPHHm9eiibsomwxl5nFaHiH9widxOv5n3otN+4SPkW2+lGT9qN5zlmQep7B7LRYzz/WXTZR5RERERESqR5NtI1Bxo+tYzDQL7+oyJU4AuroKu8JqagY+1513wkc/Ck1N8PjjsMce4Pvm/bFYIfRFQSxqKh6Ve4xKqkSvZ2kil6zFjrWAnwUnQS7WRMJJ4tK3b4BtlzYxrxSUPQ8Sq+/G/tfHILPSPJkcT36fH5NpOrnP8RsbHMvDbFQyRqFTRERERGTrGsrM88tfwic/acpF/vOfplR+tBsu6tM2pJmnawXJ5y/EXf67wv00HMD6WT/Bq3tTxUmyqBRmcTaK7n1zJsuUeUREREREhoYm20ag8gmr8gmqjSkdmc+bspFXXgknn2zKRzY0bPh9vm9KtxTL5UzYi0JcIpHEj08uOaa8cXkQmGOjPm2WVXlVqpVdTew/58GyQm8DZnwI3nQ1scRoaoLNC47lYVZERERERLa+ocg82Sx86lPw85/DGWfAtdcWep8NZNCZp8vDef1HJF/4Ola+3dyHO4aOWd+ldcxHsWwbu8K9DHQ/QzFZpswjIiIiIrL5NNk2AhUHK88D2w57m2OHoSnFGJU9qdQsfO1aU0Ll4Yfh+9+Hz35248pNBoEJnpVEPQkGCnFeTy+Czs7S1Zm+b8JrIlG6KjW24o8knj8XO7faPJGeDPtfDzscVzIWCo4iIiIiIiPL5maeFSvMosJnnjELC884Y+M+d7CZx1nzKIkXPond/iIAIRZdk86lbca3Cd3R+DnIZfpmnshAeUyZR0RERERk69Nk2whU3Og6WvFp2yZwQml/gfIVknPnwgknwLp18MADcOihJjSWl0apxITc/uv+R7vT+tPfas2oL0JvwPRaSb54Hu6ymwoHzToH9r4C4hux/U5ERERERIa1zck8//oXnHii+f6RR+BNb4Lu7i2TeazMShL/+zzu8t/2PheO3p+25p/Qmdiv97k+mafC/YqIiIiIyLZLk20jUHH4Kw+K5bX7i8PcXXfBBz8IM2bAfffBpEmFAAvm+yi8VupNEIXc/kqZbIhlFXa3lb8/mey5lpUPUzP3I9iZpQCEqclYB/4SJhy1SWMkIiIiIiLD12Azz69/DeeeaybY/vAHGDVqC2WeII+76Mck5l2MlW8DIHRHk9/jOwTTz8T27D4l76PMU74Tb2P7r4mIiIiIyNajybYRKgp/uZz5vriMSvlxYQiXXgoXXwynnmrKqFTiedDeXnqeqDdB+QrQSqVMYjHTC26ga85m+3m/303dK18hsfAHvU+F0z6Atf+1EG8caChERERERGQE2pTM4/vw+c/D1VfDWWfBNddUziZDkXnCN/5B4sVP4rQ9D5iSkd7Us8nOvoyaUWPI95d5KEzYue7g+q+JiIiIiMjWocm2Ecy2IZ3IscPoddSGC3HzDQSxJkI7CZjAmM/DOeeYFZ7f/CZcdJEJk8WrO8Gs4IzKpJSvtMxkTMgtLuVSSSJhwmd0nqBnJWcQFBqRVwqS9vpnSP7ngzgdL/WcaAzsfx3W1FMGMSoiIiIiIjJS2GGGGmsFk0e9QY1di8MOhCR7X08mTYnI978f7r0Xrr0WPvnJyrllszNPbg3JF7+AtfAXvU/lG/ajY5cfk6t7M+me8w00eRaVwlQPNhERERGR4UWTbSNZpgVr3XNYHa+SHJXB6V5NyGKshmZiNU20tcFJJ8Hjj8Pvfgenn27eFpVGKeZ5he8r9VaLwmh/vQuKS5/EYtDRYXaxRUEyDKGzs1CyxVxInvirlxGf/y2s0Cw7DSceh/WWn0Nq4uDGRERERERERoZMC7TNg+526FxMygtwOlYS1jVDognXhVWr4F3vgpdegnvugeOPN28d0swThsSW/Ybk/y7AyrWYp9xRdMy6nNams4gnnP4zTwXqzyYiIiIiMvwM68m2xx9/nDvvvJPnnnuOpUuX8v73v5+LL754o97b3t7O5Zdfzl/+8hc8z+OQQw7hoosuYty4cVv4qqvEz5jgGZjEaFkQdwE86J7HolV1HPeuBCtXwl/+AoccUnhrpZWWxWG0UtPuKIw6jplMy2Z7PrNnMs22TTjNZAo72mzb7KyLxUpLtMTj4K1fTOrZ9+Gs+6c5v1ODv/fVxHY+q/+u4SIiIiIisn2I8k5YmCGzLIjHPMjMg5pa/vdykuOOMxnjscdgn30Kbx+qzON0zic992M4LX/rPc6b/CG6d7mSjvxYbPrPPJV2yKk/m4iIiIjI8DSsJ9see+wxXn75Zfbff39aW1s36b2f/exnefXVV7nkkktIJBL84Ac/4Oyzz+aOO+4gFhvWw2JkW0qCZ7F/P5vkXR+OUVMLTzwBzc2lr1cqjVIc+CqttAxDs1utq6u0iXgULKG0JEuxqCRL9Bn2stuoefZsLM/8nQZjDoIDbyJWv+PG3LmIiIiIiIx0A+QdQo+//bmdE09PMnUq3HcfTJlSeshmZx7Lp2bplSTnX4wVmBOFdTvTvft1+E2Hk8uWvrc884DpC+d55rzqzyYiIiIiMrwN61mlL3zhC3zpS18C4Kmnntro9/3nP//hH//4BzfeeCMHH3wwADNmzOC4447jz3/+M8cdd9wWud6q8rMVn/7Lo6N490d2Z4/dPO65z2Hs2L7H2Hbf0ihRGK200tLzzKRad7d5HAQmhLqu2dUWBKWlUvor2ZJwOknM/Rzukp+ZJy0bdr8Ye7evgj2sf1RFRERERGQo9ZN3AO6Y08TpH2/isMPg9tuhvr7vMZuTeZyuV6h7+cMk2p4AILTiZGd9mXD2l/BD0y+u38zT04stDM1nqDebiIiIiMjIMKxnMOxBLvt79NFHqa+v56CDDup9bscdd2T27Nk8+uijI2Oyzemb2u6Y08T7PrErRx68jttvyZBu2qHft7uuWXlZvNIymey7+jOfN+VTfN98D4Vjcjnz3lyuEFqh8mpNu+050i++F6fjZfNEegq89WYYd0jfg0VEREREZPtWIe8A3Pi7CZxzYTOnndzNr36bHrA/2iZnnnxIatlPGbX489hBFwDdNW+mdfavCWp3we0eOPMU94FTZXwRERERkZFluyxSsWDBAmbMmIFVlnB23HFHFixYsJWuaoglmsByCUPwfZuf3bwD7zlnN048djV3/Xoe6VFjBnx71FctCAolTRIJU+okHjePLasQTHM5syp07drSMpHRBFw2W1jdWVKSJQypWXYto/51QO9EWzj5RDj2v5poExERERGRynryTpRb8p7NlT+Zzlnn78K5H1rJb2+2B5xoCwKTUbI9G+SiXtP9ZR68dhrnnsaYhZ/EDroIidEy6VKW7vI4mfguwACZp0dx/Kz0uoiIiIiIDF/DemfbYLW1tVFXV9fn+YaGBl588cXNOncYhnR1dW3WOYZK4Eylo+NFfn7zHlz98z346HuXcMXFr5BL7Uw+GwCVr9PzSsupRJLJQigMAujsNGVUfN9MtnV2FibdUimzmtPzzOuOA62thTIpQQBe53rGLTiXmnVzAAjtJJldv0s480zwLdMMYZjp7qmlGX2VLUvjXV0a7+rSeFefxry6NN7VpfGurm11vNPp9JCcZ1vJPIEzFW/9fDJdWb5/w/784pZduODjC/n6N2NkvAC8wecdKGSe/Jr/Mfbl9xPPzAegy53N/KYbCRv2ws7k8PK5fjNPtqjapWWZbFRevnK42VZ/vkcqjXd1abyrS+NdXRrv6tOYV5fGu7q21fEeqswzGNvUZFt7ezurVq3a4HFTpkwhPtAyxa3I8zxeeumlrX0ZhKFFV5fFzb/dixt+PolzPvIanzx3GQtaR5FZ3UI6vRrLCvt9X3/S6RDLCsnnbbJZyOftnnKRFu3tTu+uNteFWCwgHjdfU6kQ14V83nxmTe5ldl3zeVL+cgC64rNYMPHbZL2Z8PLLQz8gVbZo0aKtfQnbFY13dWm8q0vjXX0a8+rSeFeXxru6trXx3nfffYfkPNtC5olySzI+imt+0MzNt0zm8595lVPe28Z//mdtdt4Bk3XS6x9n9tovEAvNPyIsst7Jk7mL8V9P465eOGDmiT7P9y2SyRDHMX8qXddwtK39fI90Gu/q0nhXl8a7ujTe1acxry6Nd3Vta+M9VJlnMLapybYHH3yQiy66aIPH3X///cycOXPQn1NfX8/KlSv7PN/a2kpDQ8Ogzwvgui6zZs3arHMMhWzW7DJbtdrh059exvnnN5JKTQRKS0PaduFr8fv6E5VX6e42JSKDoLABrbsb2trM965rjk2nzS636LEbC7EW/pr0/87HCswyz/y0j8CeV7Kjk9pCo1E93d3dLFq0iOnTp5NKDf/72dZpvKtL411dGu/q05hXl8a7ujTe1TXSx3tbyDxRbglDeGNNjC9/eTHnnDOKVGoSALGYyThBUJp5NjbvAASv/IqatZ/FCn1Cy6Vl2vfoqDuLqe1msq7fzOOW9oErzlsjwUj/+d7WaLyrS+NdXRrv6tJ4V5/GvLo03tWl8e5rm5psO/XUUzn11FO3+OfsuOOOPPHEE4RhWNK3beHChey8886bdW7LsrbqVsXCdZiAed11Xcybt5pUqplkMk1Xl5kUi8cLpR7D0ATAqCdBbICfCtc1ZU8cpxBSEwlTBiWRMO/N583XhgYTPKNgWZPown7mk7Dw1+YJJwn7/5TYjh/Ztn4Qh0Aqldomfg62Fxrv6tJ4V5fGu/o05tWl8a4ujXd1jdTx3hYyT3Fu+e1vu5g3by2p1NjezNPVVZgAK848G5t3eOlKmPt5AEK3kfZ97sZLH0pjADF3gMxTM7Im1gYyUn++t1Ua7+rSeFeXxru6NN7VpzGvLo13dWm8C7aTGFDq0EMPpbW1lSeeeKL3uYULF/K///2PQw89dCte2dApD3ieB+3t5k8+b/50dtJb9jGTKaz6HEg0N1ncy8B1TahMJqG+HmprYfx48zU6X9Kbj/2XtxQm2mpnwdFPwY4f2ex7FRERERGR7Uul3FKceYr7Shdnng2xLOB/V8B/zERbkJpK10H/xBp/6IYzT3L7mWgTEREREZFSw3pD0fLly3nhhRcAs21xyZIlPPjggwC84x3v6D1u11135d3vfjeXXXYZAPvssw8HH3wwX/nKV/jiF79IIpHg6quvprm5maOPPrr6N7IFuG5h51kYWnR3m9Wc2awJgMmkeS2TMbvUbNuE0OL39XdeKJwjCqy2bXa2JRJm15z53J6yKW/cjf3kByHfbl6YchIc8AuIb1rJziAw11heCkZERERERLYv5bmlPPPEYoXcUJx5NnjeBT+E/37RPKiZgX/YIwT2VGADmWeIsokyj4iIiIjI8DSsJ9ueeuopvvzlL/c+fuyxx3jssccAmDdvXu/zvu8TBEHJe3/wgx9w+eWXc/HFF5PP5zn44IO56KKLiA1UU2QYiSbDurrA82y6ukwIzOcLk2TJpAmhnmcCYxj2nUQrVr5S03VNaO23H0EYwIuXwgtfN4+tGOxzBTR/trBFbiN5Xt9ryuXMNRXvshMRERERkZGvPLcUZ56otH2UfYozj2X1n3dSLXdg/+dz5kHNDDjqEdyaqThBdXqwKfOIiIiIiAxfw3pm6aSTTuKkk07a4HHFE2+Ruro6Lrvsst7dbiOR65o+Bb5v9U6MxeOFYJjJmP4CYWgeF5eIHHASrUi0urMPrwOe/DAsvdM8To6Dg2+HcYds8n0EQf8lXzZllaqIiIiIiIwcUW7J5SCft4jHTTbJ5wvHVMo8FfNO6xPY//oAEEJiLBz5F6gp3dG2JSnziIiIiIgMb8N6sk02zPfBdYPeciddXaWvR6s9oXS15GYFyo4F8PcToPVF83j0vnDIH6FmyqBOF/VYGOj1LR1+RURERERk22Pb5k88HhCPm8WFxZNtUDnzlOSd7pXwj5PAz4CTgrfNgdodq3YPoMwjIiIiIjLcabJthAsCcJyw97FlQXe3CZexmFnJ6bpD2Mx75V/gH6dBbq15PP0D8OYbIJYa9CnLKoD2EYYDvy4iIiIiIiNXlHmCwEyshaGZnIrFTMYZMPMEPvzzfZBZaR6/9bfQ9Oatcg8DUeYREREREdm2abJthLNtsKwQxynsaotWe3oeNDZCXZ05brOacYchzPsh/OcC06vNsmHvK2CX8ze5P1ulexjIZp5eRERERESGsSjL+H6hLGTUty0eh/r6/jNP/OVvYr3xN3OiXS6AKRtuU7Cl7mEgyjwiIiIiIts2TbaNcK4LYWjh+6ZXQbTSM2oUnurZcLZZzbiDPDz9aXj1up4PbYSDb4GJRw/ZPeRyA78uIiIiIiLbJ8eBbNb0qY56thVnnoYGM5lVnnnsdU8Rn3upedB0IOx9+da5AZR5RERERESGO022jXCmf0Hp91F5FcsygbO7u/+yJeXNuPvsfqMN+5/vgRV/MgfU7wJvuxfqZg3pPSSTlRuGD1n5SxERERERGZZ8H5JJU2exUubp6jILD0vyhJ8l+d+PYhEQxuoJD/wDtm1mtDar4scgKfOIiIiIiAxvmmzbLoSk04XVkvl8YWVnNgttbaa0Sn8Nt6Nm3OUrQa2uJcT+9U5of8E8Mf4IOOQOiDcO+R24rpn087xCaZhqhF4REREREdm2mUmx/jPP+vXQ3m4yTZR54q98C6fjJQCyu16JFZ9Kgs2s+LGZlHlERERERIYvTbZtB2y7sCIzlzOhrThABgGsXQujR1eecAtDc0xJyZX1z5D61zuxs6aReDjjDKw3/xSc+Ba9j/4mBEVEREREZPsUTUb1l3mintWdnSbzpLIvEH/1OwDkm47Em3oWboXMU6y84seWvBdlHhERERGR4Udr5EawIDA713zfIps130fPFYvKTLa1mZKS3d2FY6FQbjISW3k36X8e2jvRlt3lMnL7/HyLTrSJiIiIiIiUCwLzJ5ez+808sVhhkqytNcR94XNYoU9op+ja42dgWX0yTyUbel1ERERERLZf2tk2QkXlT0wJlRDbho4O08+gWCJhVmh2d5tji3u8ReVSamoKodVe+DOS//uY6W1gJ8js/WvyO5yG+nWLiIiIiEg1RZknn4dYLMTzzPfFmSeRMBknFjM72xKr7yG+9q8AtE/9Ih3hDJJeaebpr19bGG6FmxQRERERkWFBk20jUKXyJ65rJtHWri30AohWeAaB2b0G/QdIPx9izf02dYu+Zh7HxrB2j3twxr0Vl8L7RUREREREtrQ+Ze57erYFganYkUiY/FNc9tEOs0xYcQEAfmIynVM+X3JO3zcTcsWK+7Up84iIiIiISH802TYC9VfeJJEwQREKu9cgWglqXnOcQpCMVnFmMwHu858hsfhH5vjEVNbu+SfyNbvgZQrvERERERERqYZKmce2IZ0uvFY80ZbPw5h115HIvQZA507fxU2lC5kn27cKSCSjzCMiIiIiIhugybYRKOq1Vswmh5tfyyg3S3c2gUUTPsne45NJM+FWU1PW9DvI4TzzYeKv/wEAL70ba/Z8kCA5ufeQajQKFxERERERiZRnnmQ8xM2vwM3CqESCtlwT9OQdgNDrYszKywHIN74Za/rpJIp2qkUl9ZPJvlVCQJlHREREREQGpsm2Eag8BDYkM8RanwHXwcX8pee7FhPUNuPHmojFzErPZLLsvfkOUv8+iVjLQwD4ow6ke785xKzRhGFh91tsED9FA/VCEBERERERGUhxdnCDNaS7X4T2cZBI4gKj7cV4TjOe3YRlQd3yn+J4bwCQa/5mn5qQUTn9qOS+56HMIyIiIiIiG02TbSOQ65qVmWB2tDmdrxDWjwMcAFIpAI+8P4+gvpbQSvau5OyVW0f6qXfgrP8XAPlxx9G9721YsTSJss/b1N4FUSPzYsW9EERERERERAYSZR4ryGC1z8f3siWvp+IeKebh1dYS+j6Jxd8FzAJCf+zRfc6XSJgFiGByUaIs9CjziIiIiIjIQLSubgSKyp8AOPk1JcEzahJu2xCPeSRpIZUyvQ0iVnY16SeO6J1oC6d/iO7974JY0UFFNiUsljcyL5bJVC6BKSIiIiIiUizKPHa+hTAobeDWm3nwSIQtJJf+FCu3GoBs8zf6zJwlk30n18op84iIiIiIyEC0s22EisqfdHZkcF1wYxXKRAL42ZLjvfaVuE8ehd0217y+0yex9ruGZN6uGBgrnnMAlRqZl7++oaArIiIiIiLiuuDEsvgx+s88Xju8fLX5fuxBJKcdhZcvLREZHd9fvzZlHhERERER2RBNto1gtg1uIokTC/rvD+AUUp6dWUbi0SOhfb55YpcLYJ/vgWX127tgU3sObGgVZ9QrQUREREREZENsN9Ez6dZP5lnxJ+h+3Xw/+4vYjkXCqXwuZR4RERERERksTbaNcGF8DHasn2WTlguJJvN9xyL46xHQudA83u0i2LO0cXil3gWbakNBdVN7IYiIiIiIyHYs0QR2fzUeY7Dgl+bbup1hh+M3eDplHhERERERGQz1bBvhQjtOULNT3wBquVDfDE7STLT95W2FibY9vwV7fWuLpMAN9TpQs3AREREREdloTpKwfue+CwwtF7KrYP3z5vEunwOrOvFXmUdEREREZPujnW3bgQ4vSThqN7A7TI82J2FWgDpJ6FwKfz0cupaYg/f5Hsy+cItdS9TIfCh6IYiIiIiIiITuGLLpPaCuEVwKeeexk80BiTEw40NVux5lHhERERGR7Y8m27YToR2H9OTSJ7te7ykducg83ucqmH3+Fr+WoeqFICIiIiIiApDNQ5CcCOm0eaJjIbz+gPl+1scglq7q9SjziIiIiIhsXzTZtr3qfgMePhI6XjWP97qsKhNtkaHohSAiIiIiIlLRqz8DQlM6cta5W+USlHlERERERLYfWle3Pcq0wMNHQdvL5vEel8BuX96qlyQiIiIiIjIkAg8W/MJ8P/E4qJmyda9HRERERERGPE22bW9y6+Fvb4fWF83jXb8Mu1+8VS9JRERERERkyCy7BzJvmO932jq72kREREREZPuiybbtSb4b/v4uWPdf83iX82Gvb5sGAiIiIiIiIiPBq9ebr+kpMPHYrXstIiIiIiKyXdBk2/YiyMPjp8Hqf5jHsz4G+1ypiTYRERERERk5OhbByofM9zPPAtvZqpcjIiIiIiLbB022bQ/CkPh/PwnL7zWPp54K+/1IE20iIiIiIjKyLLq55xsLdvzoVr0UERERERHZfsS29gXIlrfD6muIrfuteTD+SDjwN1rhKSIiIiIiI0sYwqLfmO/HHwY1U7bq5YiIiIiIyPZDO9tGuNgrVzNhXU/gHL0fHPpHcBJb96JERERERESGmL3+WWibZx5M/+DWvRgREREREdmuaLJtJFv9BPG5FwEQ1O4Eh90Pbt1WvigREREREZGh5yz9fc83SZh68ta9GBERERER2a5osm0ky60zX2Ljyb71HkiO3coXJCIiIiIisgWEeWLLbjPf73ACuPVb93pERERERGS7op5tI9kOx9F9xL95eWmG5vTUrX01IiIiIiIiW0R955NYuRbzYIZKSIqIiIiISHVpZ9sIF9bvSmCntvZliIiIiIiIbDGj2v9qvomPholHb92LERERERGR7Y4m20RERERERGT4CnI0djxivp9yItjuVr0cERERERHZ/miyTURERERERIYte/UjxIJ282DKKVv3YkREREREZLukyTYREREREREZtmKv3wVA6I6CCUdu3YsREREREZHtUmxrX8DmePzxx7nzzjt57rnnWLp0Ke9///u5+OKLN/i+ZcuWceSRfUPYXnvtxa233rolLlVERERERESGWuDhvH4vAP7EdxJTCUkREREREdkKhvVk22OPPcbLL7/M/vvvT2tr6ya///zzz+eAAw7ofVxTUzOUlyciIiIiIiJb0huPYHlrAchPevfwDrgiIiIiIjJsDess8oUvfIEvfelLADz11FOb/P5p06ax9957D/FViYiIiIiISFWsfw6AvF1HMO6IrXwxIiIiIiKyvRrWk222rZZzIiIiIiIi261pp5Nv+S+Lgv2YZMe39tWIiIiIiMh2aruerbrkkkuYPXs2Bx54IBdddBHr16/f2pckIiIiIiIiGyu9A7l9b6C19pCtfSUiIiIiIrIdG9Y72wYrHo9z+umnc/DBB1NfX89zzz3Hddddx4svvshtt92G6w6+qXYYhnR1dQ3h1W6e7u7ukq+yZWm8q0vjXV0a7+rSeFefxry6NN7VpfGurm11vNPp9JCcR5ln+6bxri6Nd3VpvKtL411dGu/q05hXl8a7urbV8R6qzDMYVhiG4Vb79DLt7e2sWrVqg8dNmTKFeLy0RMgRRxzBYYcdxsUXXzyoz37kkUc499xzufrqqznuuOMGdY4XXniBXC43qPeKiIiIiIhsSfvuu+9mn0OZR0REREREtlVDkXkGa5va2fbggw9y0UUXbfC4+++/n5kzZw7pZ7/tbW8jnU4zd+7cQU+2Abiuy6xZs4bwyjZPd3c3ixYtYvr06aRSqa19OSOexru6NN7VpfGuLo139WnMq0vjXV0a7+oa6eOtzLN903hXl8a7ujTe1aXxri6Nd/VpzKtL411dGu++tqnJtlNPPZVTTz11a1/GZrEsa6tuVexPKpXaJq9rpNJ4V5fGu7o03tWl8a4+jXl1abyrS+NdXSN1vJV5BDTe1abxri6Nd3VpvKtL4119GvPq0nhXl8a7wN7aF7Ct+Nvf/kZXVxd77LHH1r4UERERERERERERERERGSa2qZ1tm2r58uW88MILgNm2uGTJEh588EEA3vGOd/Qet+uuu/Lud7+byy67DIDvfOc7WJbF3nvvTX19Pc8//zzXX389u+++O0cddVT1b0RERERERERERERERESGpWE92fbUU0/x5S9/uffxY489xmOPPQbAvHnzep/3fZ8gCHofz5w5k9///vfceuutZDIZxo8fzymnnMJ5551HLDash0RERERERERERERERESqaFjPLJ100kmcdNJJGzyueOINRkZvOBEREREREREREREREdn61LNNREREREREREREREREZJA02SYiIiIiIiIiIiIiIiIySJpsExERERERERERERERERkkTbaJiIiIiIiIiIiIiIiIDJIm20REREREREREREREREQGSZNtIiIiIiIiIiIiIiIiIoNkhWEYbu2LGCmeffZZwjAkHo9v7UvpFYYhnufhui6WZW3tyxnxNN7VpfGuLo13dWm8q09jXl0a7+rSeFfXtjre8Xic5ubmzTqHMo9ovKtL411dGu/q0nhXl8a7+jTm1aXxrq5tdbyHIvMMVmyrfOoItS39UEUsy9qmgvBIp/GuLo13dWm8q0vjXX0a8+rSeFeXxru6RvJ4K/OIxru6NN7VpfGuLo13dWm8q09jXl0a7+rSePelnW0iIiIiIiIiIiIiIiIig6SebSIiIiIiIiIiIiIiIiKDpMk2ERERERERERERERERkUHSZJuIiIiIiIiIiIiIiIjIIGmyTURERERERERERERERGSQNNkmIiIiIiIiIiIiIiIiMkiabBMREREREREREREREREZJE22iYiIiIiIiIiIiIiIiAySJttEREREREREREREREREBkmTbSIiIiIiIiIiIiIiIiKDpMk2ERERERERERERERERkUHSZJuIiIiIiIiIiIiIiIjIIGmybRh7/PHHueCCCzjqqKNobm7mm9/85ka/t729na985Su8+c1vZp999uG8885j1apVfY579tlnOe2009hzzz05/PDDueGGGwjDcChvY1h5+OGH+b//+z/22GMPjjnmGO64444Nvufaa6+lubm54p+LL754g8f9/ve/35K3tE0bzHgvW7as4ji+5z3v6XOsfr77GsyYP//883z5y1/m7W9/O3vttRdHH300V111FV1dXSXHba8/46+99hof/ehH2XvvvTnooIO44ooryOVyG3xfGIbccMMNHHbYYey5556cdtpp/Pe//+1z3BtvvMGnP/1p9tlnH9785jfz1a9+lY6Oji1wJ8PHYMZ81apVXHHFFZxwwgnss88+HHrooVxwwQUsX7685Linnnqq4s/x5z73uS15S9u0wf6MH3HEERXHMpvNlhynn/FSgxnv/n5um5ubecc73rHB47bnn+/Fixdz8cUXc8IJJ7Drrrvyzne+c6Pep/+HDx1lnupT5qkuZZ7qUt7ZMpR5qk+Zp7qUeapLmae6lHmGTmxrX4AM3mOPPcbLL7/M/vvvT2tr6ya997Of/Syvvvoql1xyCYlEgh/84AecffbZ3HHHHcRi5sdi8eLFnHnmmRx00EF89rOfZd68eVx55ZU4jsOZZ565JW5pm/b000/zqU99ilNOOYWvfOUrPPnkk3z1q1+lpqam5H/a5U499VQOOeSQkuf+/e9/c+WVV3LooYeWPJ9MJvn1r39d8tyUKVOG7iaGkcGOd+T888/ngAMO6H1cU1NT8rp+vvsa7Jg/8MADLF68mLPOOovp06fz6quvcs011/Dcc89x0003lRy7vf2Mt7a28uEPf5jp06dz7bXX8sYbb/Cd73yHTCZT8g9PlfzsZz/jmmuu4cILL6S5uZmbb76ZM844g7vvvrt3zDzP46yzzgLgqquuIpPJ8N3vfpcLLriA66+/fovf37ZosGM+d+5cHnroIU4++WT22msv1q1bx09/+lNOPfVU5syZw+jRo0uOv/zyy9lxxx17H48aNWqL3dO2bHN+xgGOOeYYzjjjjJLn4vF47/f6GS812PHebbfduOWWW0qe6+jo4Oyzz+7zuwjo57vYK6+8wt///nf22msvgiDY6H+g1v/Dh44yT3Up81SXMk91Ke9sGco81afMU13KPNWlzFN9yjxDKJRhy/f93u8PP/zw8Bvf+MZGve/ZZ58Nd9555/Cxxx7rfe61114Lm5ubw/vuu6/3ua997Wvh4YcfHmaz2d7nrrrqqnC//fYreW57ccYZZ4SnnXZayXPnn39+eOyxx27yub74xS+G+++/f8k4XnPNNeHee++92dc5Ugx2vJcuXRruvPPO4QMPPDDgcfr57muwY75mzZo+z91zzz3hzjvvHL7wwgu9z22PP+PXXXdduPfee4fr1q3rfe4Pf/hDOHv27HDlypX9vi+TyYRvetObwquuuqr3uWw2Gx5++OHh17/+9d7n7r333rC5uTl87bXXep977LHHwp133jl87rnnhvRehovBjnlra2voeV7JcytWrAibm5vDG2+8sfe5J598Mtx5553D559/fsivfTga7HiH4cb97qKf8VKbM97l7rjjjj7jqJ/vvop/3/7iF78YHn/88Rt8j/4fPrSUeapLmae6lHmqS3lny1DmqT5lnupS5qkuZZ7qU+YZOiojOYzZ9uD++h599FHq6+s56KCDep/bcccdmT17No8++mjJcUceeWTJaovjjjuOtrY2/vOf//KzrxIAAA6ySURBVAz+woehXC7HU0891We123HHHcdrr73GsmXLNvpc2WyWhx56iGOOOaZkbKVgKMe7P/r5LrU5Y16++g1g1113BahYqml78uijj3LggQfS2NjY+9yxxx5LEAQ8/vjj/b7v2WefpaOjg2OPPbb3uXg8ztvf/vY+/59ubm4uWY110EEH0djYyN///vehvZlhYrBjXl9f37vLITJhwgRGjx693f8cD2Sw470p59fPeMFQjvecOXOYPn06e+655xBf5cgymN+39f/woaXMUz3KPNWlzFNdyjtbjjJP9SnzVJcyT3Up81SfMs/Q0WTbdmjBggXMmDEDy7JKnt9xxx1ZsGABAF1dXaxYsaLkP4ToGMuyeo/bXixZsgTP8/qMx8yZMwE2aTz+9re/0dHRUbH+bSaT4S1veQu77rorxx13HLfeeuvmXfgwNRTjfckllzB79mwOPPBALrroItavX9/7mn6++xrKn3GAZ555BqDP+ba3n/EFCxb0GYP6+nrGjh074JhGr1X6+3j99dfJZDL9nt+yLGbMmLFd/hzD4Me8koULF7JmzZre/w6KnXPOOcyePZtDDz2U7373u71/J9ubzR3ve++9l91335199tmHs88+m3nz5m3w/Nvzz/hQ/Xy3tLTw5JNP9luLXz/fm0f/D982KPNsOmWe6lLmqS7lnS1Hmaf6lHmqS5mnupR5hgf9P7wy9WzbDrW1tVFXV9fn+YaGBl588UXANBMH8z+zYvF4nFQqtcn9Eoa76H7LxyN6vCnjMWfOHMaPH8/+++9f8vzUqVO58MIL2XXXXclms9x777187Wtfo729fburp7854x2Pxzn99NP/v737i6m6/uM4/sZ+CGN6ujubLlu6OikHCRQlhp0TpU30WNM49mfMtnK15b+N2hzOLWMZuC5aseYxraiLLlBbSgcktOZoQDVykRRrxlH0AvsLh0ZyzvD9u2gcOZ0D4pfD9xwOz8fG5vn4PV8+3zeffeC19znfI6tWrRKLxSLff/+9eDweOX/+vBw9elRSU1NZ31HEco3/+eefUl1dLQ8//LDcddddofGZuMb9fn9ETUX+3W/Hq6nf75fZs2dLWlpa2LjFYhFVlf7+fklPTx93P5+J61jEeM3/S1XltddeE6vVKuvXrw+Nz507V7Zu3SorVqyQtLQ0aWtrk/fff1+6u7uT837jNzGZej/00EOSnZ0t8+fPl8uXL4vH45Gnn35aPv3009D93Vnj4WK1vuvr62V4eDgieLK+Y4M9PDGQeW4dmcdcZB5zkXemDpnHfGQec5F5zEXmmR7Yw6Oj2ZZABgYGJvS27QULFnArjhi4lXrHit/vl7Nnz0ppaWnEW3Qfe+yxsMcPPvigBINBOXjwoGzZskVSU1NjNo94MKveVqtV9u3bF3q8cuVKueeee+SFF16QpqYmWbdu3aTOP53EY40Hg0EpKysTEQn7OYgk/xpHcqmurpa2tjY5cuSIZGRkhMYzMzNDtw0SESkoKBCr1SoVFRXS0dHB7Sluwd69e0P/zsvLk8LCQikuLpb33nsvYv9AbNXV1YndbpeFCxeGjbO+YQYyj7nIPOYi85iLvANMDpln6pF54ofMg3ig2ZZATp06FbYJj6W+vj7q27snymKxSG9vb8R4f3+/3H777SIioY7zyKvhRgQCAfnnn39Cx01nt1Lvkev9bz38fr+IyITr0djYKIFAQDZs2DCh44uLi6WxsVF6enom9TNPBPGo9win0ykZGRnS2dkp69atmxHrW8T8mquq7NmzRzo6OuTjjz8Wq9V60+ck0xqPxmKxRNRUJHy/Het5gUBAhoaGwl4l5Pf7JSUlJfRci8Uif//9d9Tzz5s3LwZXMP0YrflotbW18s4778j+/fuloKDgpscXFxdLRUWFnD9/fsb9YR6Leo+wWq2yfPly6ezsDDs/a/yGWNS7p6dHOjo6pLy8fELHz+T1bRR7+PjIPOYi85iLzGMu8k5iIPOYj8xjLjKPucg80wN7eHQ02xKI2+0Wt9s95d9n0aJF0traKqoa9hkGPp9PbDabiIhkZGTIvHnzIu6d6vP5RFUj7rU6Hd1KvQOBgKSmpkp3d7c88MADofGx7k87ls8++0wWLVoU9gqKmSIe9R7LTFjfIubX/MCBA9LQ0CCHDx+WxYsXG5t0khn9uTAjBgYG5Lfffhu3piP/5/P5wmrZ3d0t8+fPl/T09NBxP//8c9hzVVV8Pp8UFhbG6jKmFaM1H9HU1CT79u2TnTt3SklJyVRNM2lMtt4TOT9r/IZY1Luurk5mzZo1Y971EA/s4eMj85iLzGMuMo+5yDuJgcxjPjKPucg85iLzTA/s4dHNuvkhSDYOh0P6+/ultbU1NObz+eTHH38Uh8MRdtyZM2ckGAyGxurr68VisUhubq6pc4632bNnS35+vjQ2NoaNj7zi9o477rjpOX799Vf55ptvxvxgzmhG6n3nnXfe8pyns1jUe7Qvv/xSBgcHZenSpaEx1ne4ydb83XfflZqaGqmqqprQq+JGnz+Z17jD4ZCWlpbQK2ZF/n0F7qxZs8b9o2LZsmUyZ84caWhoCI0Fg0H5/PPPI/bprq4uuXjxYmistbVV+vr6xOl0xvZipgmjNRcR+frrr6WsrEzcbrds27Ztwt/T6/WKiITtMTPFZOr9X1evXpX29vaIvZo1fkMs6u31emXlypUTejX+yPEiM3N9G8UenhjIPLeOzGMuMo+5yDtTh8xjPjKPucg85iLzTA/s4WNQTFtXrlzRhoYGbWho0Pvvv1+fe+650OPRlixZouXl5WFjzz77rDqdTq2vr9czZ86oy+XSRx99VIPBYOiYixcvak5Oju7YsUNbWlq0pqZG7Xa7HjlyxJTrSzTffvutLlmyRF955RVta2vTt956S++9916tr68POy5avVVVP/jgA7XZbHrp0qWo59+4caN++OGH2tzcrE1NTbpz50612WxaU1MzJdeT6IzWu7KyUquqqvTUqVPa0tKiHo9Hc3NzddOmTazvmzBa85MnT6rNZtOXX35Zz507F/b1xx9/hI6biWu8r69PCwsLtbS0VJubm/XYsWOal5enr776athxW7Zs0dWrV4eNHTp0SLOysrSmpkZbWlp0x44dmpubqz09PaFjAoGAulwudblc+sUXX6jX61Wn06nPP/+8KdeXiIzW/MKFC7p8+XJ1uVza3t4eto5H79svvfSSvv3223r69Gltbm7WN954Q+12u7744oumXWMiMVrvuro6LSsr0xMnTmhra6vW1tbq6tWrdcWKFazxcUxmT1FV7ezsVJvNprW1tVHPz/qONDg4GPr7urS0VJ1OZ+jxyO849vCpReYxF5nHXGQec5F3pgaZx3xkHnORecxF5jEfmSd2aLZNY8ePH1ebzRb1azSbzaa7d+8OG/P7/VpeXq55eXmak5Oj27dv197e3ojv0d7erm63W7OystThcOihQ4f0+vXrU3pdiez06dPqcrnUbrfrmjVr9OjRoxHHRKu3quqmTZu0pKRkzHPv2rVLi4qKdOnSpZqdna0lJSV64sSJmM5/ujFS79raWt24caMuW7ZMMzMztaioSPfv368DAwMRz2V9RzJS8927d4+5Fx0/fjx03Exd4xcuXNBnnnlGs7OztaCgQKuqqnRoaCjsmNLSUi0qKgobu379uno8HnU4HJqVlaVut1u/++67iPP39vbq9u3bNScnR/Py8rS8vDzqep9JjNR8vN+po9e7x+PR9evXa05Ojtrtdn3kkUe0uro64vwziZF6nzt3TktLSzU/P18zMzM1Pz9fd+3apb/88kvE+Vnj4YzuKaqqVVVVmpWVpf39/VHPzfqOdPny5TH3hra2NlVlD59qZB7zkXnMReYxF3lnapB5zEfmMReZx1xkHnOReWInRVU13u+uAwAAAAAAAAAAAKYjPrMNAAAAAAAAAAAAMIhmGwAAAAAAAAAAAGAQzTYAAAAAAAAAAADAIJptAAAAAAAAAAAAgEE02wAAAAAAAAAAAACDaLYBAAAAAAAAAAAABtFsAwAAAAAAAAAAAAyi2QYAAAAAAAAAAAAYRLMNAAAAAAAAAAAAMIhmGwAAAAAAAAAAAGAQzTYAAAAAAAAAAADAIJptAAAAAAAAAAAAgEE02wAASBDXrl2TtWvXytq1a+XatWuh8b6+Plm1apU8+eSTMjw8HMcZAgAAAIBxZB4AQLKi2QYAQIJIT0+XAwcOSE9Pj7z55puh8YqKChkYGJDKykq57bbb4jhDAAAAADCOzAMASFb/i/cEAADADffdd59s3bpVDh8+LGvWrJHff/9dvF6v7NmzRxYuXBjv6QEAAADApJB5AADJKEVVNd6TAAAANwQCAXn88cdlcHBQBgcH5e6775aPPvpIUlJS4j01AAAAAJg0Mg8AINnQbAMAIAH98MMPUlJSImlpaeL1emXBggXxnhIAAAAAxAyZBwCQTPjMNgAAEtBXX30lIiJDQ0Ny6dKlOM8GAAAAAGKLzAMASCa8sw0AgATT1dUlJSUlsmHDBunq6pK//vpL6urqZO7cufGeGgAAAABMGpkHAJBsaLYBAJBAgsGgbN68Wfr7++XkyZNy5cqVUAitrKyM9/QAAAAAYFLIPACAZMRtJAEASCAHDx6Un376SV5//XWZM2eOLF68WLZt2yaffPKJnD17Nt7TAwAAAIBJIfMAAJIR72wDACBBdHZ2yubNm+Wpp56SvXv3hsaHh4fliSeekKtXr4rX6xWLxRLHWQIAAACAMWQeAECyotkGAAAAAAAAAAAAGMRtJAEAAAAAAAAAAACDaLYBAAAAAAAAAAAABtFsAwAAAAAAAAAAAAyi2QYAAAAAAAAAAAAYRLMNAAAAAAAAAAAAMIhmGwAAAAAAAAAAAGAQzTYAAAAAAAAAAADAIJptAAAAAAAAAAAAgEE02wAAAAAAAAAAAACDaLYBAAAAAAAAAAAABtFsAwAAAAAAAAAAAAyi2QYAAAAAAAAAAAAYRLMNAAAAAAAAAAAAMOj/FALBNvjVcTwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Combine and visualize\n", - "model_list = {\n", - " \"Gaussian Process MAD\": gp_pred,\n", - " \"Gaussian Process Posterior sd\": gp_pred2,\n", - "}\n", - "all_pred = (\n", - " pd.concat(model_list, names=[\"id\"])\n", - " .reset_index(level=0)\n", - " .rename(columns={\"id\": \"model\"})\n", - ")\n", - "\n", - "sns.set(style=\"whitegrid\")\n", - "g = sns.FacetGrid(all_pred, col=\"model\", height=5, aspect=1.75)\n", - "g.map(plt.plot, \"x\", \".pred\", color=\"blue\", lw=1)\n", - "g.map(plt.plot, \"x\", \".pred_lower\", color=\"orange\", lw=1.75)\n", - "g.map(plt.plot, \"x\", \".pred_upper\", color=\"orange\", lw=1.75)\n", - "for ax in g.axes.flat:\n", - " sns.scatterplot(\n", - " x=pretrain_data[\"x\"], y=pretrain_data[\"y\"], color=\"blue\", alpha=0.05, ax=ax\n", - " )\n", - " sns.scatterplot(x=cal_data[\"x\"], y=cal_data[\"y\"], color=\"orange\", alpha=0.25, ax=ax)\n", - "\n", - "g.add_legend()\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "72098014", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/tutorial/MixedInteger/RunTestCases_Paper_SMT_v2.ipynb b/tutorial/MixedInteger/RunTestCases_Paper_SMT_v2.ipynb index 876c623eb..c2b8f9b0f 100644 --- a/tutorial/MixedInteger/RunTestCases_Paper_SMT_v2.ipynb +++ b/tutorial/MixedInteger/RunTestCases_Paper_SMT_v2.ipynb @@ -5,7 +5,7 @@ "id": "787a2f97", "metadata": {}, "source": [ - "\"Open " + "\"Open " ] }, { diff --git a/tutorial/MixedInteger/SMT_MixedInteger.ipynb b/tutorial/MixedInteger/SMT_MixedInteger.ipynb index f7578d40b..3538d0eca 100644 --- a/tutorial/MixedInteger/SMT_MixedInteger.ipynb +++ b/tutorial/MixedInteger/SMT_MixedInteger.ipynb @@ -7,7 +7,7 @@ "id": "view-in-github" }, "source": [ - "\"Open" + "\"Open" ] }, { diff --git a/tutorial/MixedInteger/SMT_MixedInteger_Engineering_applications.ipynb b/tutorial/MixedInteger/SMT_MixedInteger_Engineering_applications.ipynb index 649a4d010..e87b2e5a0 100644 --- a/tutorial/MixedInteger/SMT_MixedInteger_Engineering_applications.ipynb +++ b/tutorial/MixedInteger/SMT_MixedInteger_Engineering_applications.ipynb @@ -7,7 +7,7 @@ "id": "view-in-github" }, "source": [ - "\"Open" + "\"Open" ] }, { diff --git a/tutorial/README.md b/tutorial/README.md index 433b9f83f..dce312a3a 100644 --- a/tutorial/README.md +++ b/tutorial/README.md @@ -55,6 +55,12 @@ These tutorials introduce to use the opensource Surrogate Modeling Toolbox where [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/Kernels/SMT_Kernel_Hale.ipynb) +## Explainability and conformal prediction + +### Warning: [The explainability usage tutorial has been moved to SMTorg/smt-explainability](https://github.com/SMTorg/smt-explainability) + +[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt-explainability/blob/master/tutorial/Explainability_tools.ipynb) + ## Other Gaussian Process Models and Sampling Methods @@ -74,9 +80,6 @@ These tutorials introduce to use the opensource Surrogate Modeling Toolbox where [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/Misc/SMT_SGP_analytic.ipynb) -### Conformal prediction - -[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/Misc/Split_Conformal_prediction_SMT.ipynb) ### Cooperative Components Kriging @@ -87,7 +90,7 @@ These tutorials introduce to use the opensource Surrogate Modeling Toolbox where ### Warning: [The Design Space usage tutorial has been moved to SMTorg/smt-design-space-ext](https://github.com/SMTorg/smt-design-space-ext) -[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg//smt-design-space-ext/blob/main/smt_design_space/SMT_DesignSpace_example.ipynb) +[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt-design-space-ext/blob/master/tutorial/SMT_DesignSpace_example.ipynb) ### Specific notebook associated to the SMT 2.0 Journal Paper (submitted) with a focus on mixed integer and mixed hierarchical surrogate models (continuous, discrete, categorical) diff --git a/tutorial/SBO/SMT_EGO_application.ipynb b/tutorial/SBO/SMT_EGO_application.ipynb index be8690ad8..93133c76d 100644 --- a/tutorial/SBO/SMT_EGO_application.ipynb +++ b/tutorial/SBO/SMT_EGO_application.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "

\"Open

" + "

\"Open

" ] }, {