forked from areslp/matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlow_rank_acc.m
77 lines (63 loc) · 1.22 KB
/
low_rank_acc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
function [ Z, E ] = low_rank( X, lambda, maxIter )
% solve min ||J||_* + \lambda ||E||_2,1 s.t. X=XZ+E, Z=J
% TODO: acc as LRR
P=orth(X'); % nxr
r=size(P,2);
A=X*P; % 3xr
% fprintf(1,'r is %d\n',r);
% solve min ||J||_* + \lambda ||E||_2,1 s.t. X=AZ+E, Z=J
% A 3xr
% X 3xn
% Z rxn
d=size(X,1);
n=size(X,2);
Z=zeros(r,n);
J=Z;
E=zeros(d,n);
Y1=zeros(d,n);
Y2=zeros(r,n);
mu=1e-6;
max_mu=10^10;
rho=1.9;
epsilon=1e-8;
ata=A'*A;
atx=A'*X;
inv_a=inv(ata+eye(r));
MAX_ITER=maxIter;
iter=0;
while true
if iter>MAX_ITER
% fprintf(1,'max iter num reached!\n');
break;
end
% 1. update J
% tic
Y=Z+Y2/mu;
tau=1/mu;
J=singular_value_shrinkage(Y,tau);
% toc
% J=max(J,0);
% 2. update Z
Z=inv_a*(atx-A'*E+J+(A'*Y1-Y2)/mu);
% Z=max(Z,0);
% 3. update E
tlambda=lambda/mu;
Q=X-A*Z+Y1/mu;
E=l21(Q,tlambda);
% 4. update Y1, Y2
xz=X-A*Z;
zj=Z-J;
leq1=xz-E;
leq2=zj;
Y1=Y1+mu*(leq1);
Y2=Y2+mu*(leq2);
% 5. update mu
mu=min(rho*mu,max_mu);
% 6. check the convergence
if max(max(abs(leq1)))<epsilon && max(max(abs(leq2)))<epsilon
% fprintf(1,'iter %d, convergenced\n', iter);
break;
end
iter=iter+1;
end
Z=P*Z;