forked from areslp/matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSSQP.m
87 lines (79 loc) · 1.98 KB
/
SSQP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
function [Z] = SSQP(X, lambda)
% implement the algorithm in paper "Efficient Subspace Segmentation via Quadratic Programming"
% f(Z)=||XZ-X||_F^2+lambda e^TZ^TZe
[m,n]=size(X);
Z=rand(n,n);
Zk=Z;
e=ones(n,1);
E=ones(n,n);
tau=0.0;
rho=0.0;
XtX=X'*X;
tol1=1e-4;
tol2=1e-1;
convergenced=false;
iter=0;
while ~convergenced
gz=gradient(XtX,Z,E,lambda);
D=projectZ(Z-tau*gz)-Z;
% compute rho by line search
% tic
% rho=backTracking(Z,D,X,XtX,lambda,E,@gradient,@fx);
rho=0.5;
% t=toc;
% fprintf(1,'back tracking takes: %f, rho is %f\n',t,rho);
Zk=Z;
Z=Z+rho*D;
s=reshape(Z-Zk,n*n,1);
gzn=gradient(XtX,Z,E,lambda);
y=reshape(gzn-gz,n*n,1);
% y'*y
% s'*y
tau=(s'*s)/(s'*y);
% check convergence
cc1=norm(Z-Zk,'fro');
cc2=tau;
if cc1<tol1 && cc2<tol2
convergenced=true;
end
if mod(iter,100)==0 || convergenced
fprintf(1,'iter is %d, cc1 is %f, cc2 is %f\n',iter,cc1,cc2);
end
iter=iter+1;
end
function [Z] = projectZ(Z)
Z=max(Z,0);
function [g] = gradient(XtX,Z,E,lambda)
g=2*XtX*Z-2*XtX+2*lambda*Z*E;
function [f] = fx(X,Z,lambda)
f=norm(X*Z-X,'fro')+lambda*norm(Z'*Z,1);
function [alpha] = backTracking(Z,dir,X,XtX,lambda,E,gradient,fx)
c1=1e-4;
c2=0.1;
tau=0.5;
alpha_min=1e-8;
% init guess of alpha
alpha=1.0;
k=0;
convergenced=false;
while ~convergenced
% check Armijo rule and curvature
Zn=Z+alpha*dir;
% fx
fz=fx(X,Z,lambda);
fzn=fx(X,Zn,lambda);
% gx
gz=gradient(XtX,Z,E,lambda);
gzn=gradient(XtX,Zn,E,lambda);
cond1=fzn-fz-c1*alpha*dir'*gz;
cond2=dir'*gzn-c2*dir'*gz;
if (max(cond1(:))<=0 && min(cond2(:))>=0)
convergenced=true;
end
if alpha<alpha_min
convergenced=true;
end
% update
alpha=alpha*tau;
k=k+1;
end