-
Notifications
You must be signed in to change notification settings - Fork 47
/
WRNs_imagenet.py
463 lines (368 loc) · 18.5 KB
/
WRNs_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
"""
Lasagne implementation of SGDR on WRNs from "SGDR: Stochastic Gradient Descent with Restarts"
(http://arxiv.org/abs/XXXX) This code is based on Lasagne Recipes available at
https://github.com/Lasagne/Recipes/blob/master/papers/deep_residual_learning/Deep_Residual_Learning_CIFAR-10.py
and on WRNs implementation by Florian Muellerklein available at
https://gist.github.com/FlorianMuellerklein/3d9ba175038a3f2e7de3794fa303f1ee
"""
from __future__ import print_function
import sys
import os
import time
import pickle
from argparse import ArgumentParser
import numpy as np
import theano
import theano.tensor as T
import lasagne
from lasagne.nonlinearities import rectify, softmax
from lasagne.layers import InputLayer, DenseLayer, DropoutLayer, batch_norm, BatchNormLayer
from lasagne.layers import ElemwiseSumLayer, NonlinearityLayer, GlobalPoolLayer
from lasagne.init import HeNormal
from lasagne.layers import Conv2DLayer as ConvLayer
# for the larger networks (n>=9), we need to adjust pythons recursion limit
sys.setrecursionlimit(10000)
num_of_train_images = 1281167
class Logger:
def __init__(self, k, lr, run):
self.lr = lr
self.k = k
self.run = run
def log_message(self, message):
with open('log_{}_{}_{}.txt'.format(self.k, self.lr, self.run), 'a') as l_f:
l_f.write(message + '\n')
l_f.flush()
def log_stat(self, message):
with open("stat_{}_{}_{}.txt".format(self.k, self.lr, self.run), 'a') as l_f:
l_f.write(message)
l_f.flush()
def log_loss(self, message):
with open("statloss_{}_{}_{}.txt".format(self.k, self.lr, self.run), 'a') as l_f:
l_f.write(message)
l_f.flush()
def unpickle(file):
with open(file, 'rb') as fo:
dict = pickle.load(fo)
return dict
# Mean image can be extracted from any training data file
def load_validation_data(data_folder, mean_image, img_size=32):
test_file = os.path.join(data_folder, 'val_data')
d = unpickle(test_file)
x = d['data']
y = d['labels']
x = x / np.float32(255)
# Labels are indexed from 1, shift it so that indexes start at 0
y = np.array([i-1 for i in y])
# Remove mean (computed from training data) from images
x -= mean_image
img_size2 = img_size * img_size
x = np.dstack((x[:, :img_size2], x[:, img_size2:2*img_size2], x[:, 2*img_size2:]))
x = x.reshape((x.shape[0], img_size, img_size, 3)).transpose(0, 3, 1, 2)
return dict(
X_test=lasagne.utils.floatX(x),
Y_test=y.astype('int32'))
def load_databatch(data_folder, idx, img_size=32):
data_file = os.path.join(data_folder, 'train_data_batch_')
d = unpickle(data_file + str(idx))
x = d['data']
y = d['labels']
mean_image = d['mean']
x = x/np.float32(255)
mean_image = mean_image/np.float32(255)
# Labels are indexed from 1, shift it so that indexes start at 0
y = [i-1 for i in y]
data_size = x.shape[0]
x -= mean_image
img_size2 = img_size * img_size
x = np.dstack((x[:, :img_size2], x[:, img_size2:2*img_size2], x[:, 2*img_size2:]))
x = x.reshape((x.shape[0], img_size, img_size, 3)).transpose(0, 3, 1, 2)
# create mirrored images
X_train = x[0:data_size, :, :, :]
Y_train = y[0:data_size]
X_train_flip = X_train[:, :, :, ::-1]
Y_train_flip = Y_train
X_train = np.concatenate((X_train, X_train_flip), axis=0)
Y_train = np.concatenate((Y_train, Y_train_flip), axis=0)
return dict(
X_train=lasagne.utils.floatX(X_train),
Y_train=Y_train.astype('int32'),
mean=mean_image)
# ##################### Build the neural network model #######################
def ResNet_FullPre_Wide(input_var=None, nout=10, n=3, k=2, dropoutrate=0, img_size=32):
'''
Adapted from https://gist.github.com/FlorianMuellerklein/3d9ba175038a3f2e7de3794fa303f1ee
which was tweaked to be consistent with 'Identity Mappings in Deep Residual Networks', Kaiming He et al. 2016
(https://arxiv.org/abs/1603.05027)
And 'Wide Residual Networks', Sergey Zagoruyko, Nikos Komodakis 2016 (http://arxiv.org/pdf/1605.07146v1.pdf)
'''
n_filters = {0: 16, 1: int(16*k), 2: int(32*k), 3: int(64*k), 4: int(128*k)}
# create a residual learning building block with two stacked 3x3 convlayers and dropout
def residual_block(l, increase_dim=False, first=False, filters=16):
if increase_dim:
first_stride = (2, 2)
else:
first_stride = (1, 1)
if first:
# hacky solution to keep layers correct
bn_pre_relu = l
else:
# contains the BN -> ReLU portion, steps 1 to 2
bn_pre_conv = BatchNormLayer(l)
bn_pre_relu = NonlinearityLayer(bn_pre_conv, rectify)
# contains the weight -> BN -> ReLU portion, steps 3 to 5
conv_1 = batch_norm(ConvLayer(bn_pre_relu, num_filters=filters, filter_size=(3,3), stride=first_stride,
nonlinearity=rectify, pad='same', W=HeNormal(gain='relu')))
if dropoutrate > 0: # with dropout
dropout = DropoutLayer(conv_1, p=dropoutrate)
# contains the last weight portion, step 6
conv_2 = ConvLayer(dropout, num_filters=filters, filter_size=(3,3), stride=(1,1), nonlinearity=None,
pad='same', W=HeNormal(gain='relu'))
else: # without dropout
conv_2 = ConvLayer(conv_1, num_filters=filters, filter_size=(3,3), stride=(1,1), nonlinearity=None,
pad='same', W=HeNormal(gain='relu'))
# add shortcut connections
if increase_dim:
# projection shortcut, as option B in paper
projection = ConvLayer(l, num_filters=filters, filter_size=(1,1), stride=(2,2), nonlinearity=None,
pad='same', b=None)
block = ElemwiseSumLayer([conv_2, projection])
elif first:
# projection shortcut, as option B in paper
projection = ConvLayer(l, num_filters=filters, filter_size=(1,1), stride=(1,1), nonlinearity=None,
pad='same', b=None)
block = ElemwiseSumLayer([conv_2, projection])
else:
block = ElemwiseSumLayer([conv_2, l])
return block
# Building the network
l_in = InputLayer(shape=(None, 3, img_size, img_size), input_var=input_var)
# first layer
l = batch_norm(ConvLayer(l_in, num_filters=n_filters[0], filter_size=(3,3), stride=(1,1), nonlinearity=rectify,
pad='same', W=HeNormal(gain='relu')))
# first stack of residual blocks
l = residual_block(l, first=True, filters=n_filters[1])
for _ in range(1, n):
l = residual_block(l, filters=n_filters[1])
# second stack of residual blocks
l = residual_block(l, increase_dim=True, filters=n_filters[2])
for _ in range(1, n):
l = residual_block(l, filters=n_filters[2])
# third stack of residual blocks
if img_size >= 32:
l = residual_block(l, increase_dim=True, filters=n_filters[3])
for _ in range(1, n):
l = residual_block(l, filters=n_filters[3])
# fourth stack of residual blocks
if img_size >= 64:
l = residual_block(l, increase_dim=True, filters=n_filters[4])
for _ in range(1, n):
l = residual_block(l, filters=n_filters[4])
bn_post_conv = BatchNormLayer(l)
bn_post_relu = NonlinearityLayer(bn_post_conv, rectify)
# average pooling
avg_pool = GlobalPoolLayer(bn_post_relu)
# fully connected layer
network = DenseLayer(avg_pool, num_units=nout, W=HeNormal(), nonlinearity=softmax)
return network
# ############################# Batch iterator ###############################
def iterate_minibatches(inputs, targets, batchsize, shuffle=False, augment=False, img_size=32):
assert len(inputs) == len(targets)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
if augment:
# as in paper :
# pad feature arrays with 4 pixels on each side
# and do random cropping
padded = np.pad(inputs[excerpt], ((0, 0), (0, 0), (4, 4), (4, 4)), mode='constant')
random_cropped = np.zeros(inputs[excerpt].shape, dtype=np.float32)
crops = np.random.random_integers(0, high=8, size=(batchsize, 2))
for r in range(batchsize):
random_cropped[r, :, :, :] = \
padded[r, :, crops[r, 0]:(crops[r, 0]+img_size), crops[r, 1]:(crops[r, 1]+img_size)]
inp_exc = random_cropped
else:
inp_exc = inputs[excerpt]
yield inp_exc, targets[excerpt]
# ############################## Main program ################################
def main(data_folder, n=4, irun=1, k=1, num_epochs=40, cont=False, E1=10, E2=20, E3=30, lr=0.1, lr_fac=0.1,
reg_fac=0.0005, dropoutrate=0, img_size=32):
nout = 1000
logger = Logger(k, lr, irun)
# Load the dataset
logger.log_message("Loading data...")
# Load first batch so we can extract mean image needed to load validation data
data = load_databatch(data_folder, 1, img_size=img_size)
mean_image = data['mean']
del data
# Load test data
test_data = load_validation_data(data_folder, mean_image=mean_image, img_size=img_size)
X_test = test_data['X_test']
Y_test = test_data['Y_test']
# Prepare Theano variables for inputs and targets
input_var = T.tensor4('inputs')
target_var = T.ivector('targets')
# Create neural network model
logger.log_message("Building model and compiling functions...")
network = ResNet_FullPre_Wide(input_var, nout, n, k, dropoutrate, img_size)
logger.log_message("Number of parameters in model: %d" % lasagne.layers.count_params(network, trainable=True))
print("Number of parameters in model: %d" % lasagne.layers.count_params(network, trainable=True))
print('Img Size %d' % img_size)
print('K %d' % k)
# Create a loss expression for training, i.e., a scalar objective we want
# to minimize (for our multi-class problem, it is the cross-entropy loss):
prediction = lasagne.layers.get_output(network)
loss = lasagne.objectives.categorical_crossentropy(prediction, target_var)
loss = loss.mean()
# Add weight decay
all_layers = lasagne.layers.get_all_layers(network)
sh_reg_fac = theano.shared(lasagne.utils.floatX(reg_fac))
l2_penalty = lasagne.regularization.regularize_layer_params(all_layers, lasagne.regularization.l2) * sh_reg_fac
loss = loss + l2_penalty
# Create update expressions for training
# Stochastic Gradient Descent (SGD) with momentum
params = lasagne.layers.get_all_params(network, trainable=True)
sh_lr = theano.shared(lasagne.utils.floatX(lr))
updates = lasagne.updates.momentum(loss, params, learning_rate=sh_lr, momentum=0.9)
# Compile a function performing a training step on a mini-batch (by giving
# the updates dictionary) and returning the corresponding training loss:
train_fn = theano.function([input_var, target_var], loss, updates=updates)
# Create a loss expression for validation/testing
test_prediction = lasagne.layers.get_output(network, deterministic=True)
test_loss = lasagne.objectives.categorical_crossentropy(test_prediction, target_var)
test_loss = test_loss.mean()
test_acc_1 = T.mean(lasagne.objectives.categorical_accuracy(test_prediction, target_var),
dtype=theano.config.floatX)
test_acc_5 = T.mean(lasagne.objectives.categorical_accuracy(test_prediction, target_var, 5),
dtype=theano.config.floatX)
# Compile a second function computing the validation loss and accuracy:
val_fn = theano.function([input_var, target_var], [test_loss, test_acc_1, test_acc_5])
start_time0 = time.time()
batchsize = 128
start_epoch = 0
# Load model #####################################################################
if cont:
filename = 'network_last_{}_{}.p'.format(lr, run)
logger.log_message('Loading network from file %s' % filename)
net = unpickle(filename)
start_epoch = net['epoch']
for p, value in zip(updates.keys(), net['u']):
p.set_value(value)
lasagne.layers.set_all_param_values(network, net['w'], trainable=False)
# Simulate learning rate runs
for epoch in range(start_epoch):
# Adjust learning rate
if (epoch + 1) == E1 or (epoch + 1) == E2 or (epoch + 1) == E3:
new_lr = sh_lr.get_value() * lr_fac
logger.log_message("New LR:" + str(new_lr))
sh_lr.set_value(lasagne.utils.floatX(new_lr))
# Training #####################################################################
logger.log_message("Starting training...")
# We iterate over epochs:
for epoch in range(start_epoch, num_epochs):
# In each epoch, we do a full pass over the training data:
start_time = time.time()
for idatabatch in range(1, 11):
start_time_tmp = time.time()
data = load_databatch(data_folder, idatabatch, img_size=img_size)
print('Data loading took %f' % (time.time() - start_time_tmp))
X_train = data['X_train']
Y_train = data['Y_train']
train_err = 0
train_batches = 0
for batch in iterate_minibatches(X_train, Y_train, batchsize, shuffle=True, augment=True, img_size=img_size):
inputs, targets = batch
train_err += train_fn(inputs, targets)
train_batches += 1
logger.log_loss("{}\t{:.15g}\t{:.15g}\t{:.15g}\n".format(epoch, float(sh_lr.get_value()),
time.time() - start_time0, train_err / train_batches))
logger.log_message("idatabatch#{} took {:.3f}s".format(idatabatch, time.time() - start_time))
del data, X_train, Y_train
print('Train Data pass took: %f' % (time.time() - start_time))
# And a full pass over the validation data:
val_err = 0
val_acc_1 = 0
val_acc_5 = 0
val_batches = 0
for batch in iterate_minibatches(X_test, Y_test, 500, shuffle=False, img_size=img_size):
inputs, targets = batch
err, acc_1, acc_5 = val_fn(inputs, targets)
val_err += err
val_acc_1 += acc_1
val_acc_5 += acc_5
val_batches += 1
print('Epoch took: %f' % (time.time() - start_time))
# Then we print the results for this epoch:
logger.log_message("Epoch {} of {} took {:.3f}s".format(epoch + 1, num_epochs, time.time() - start_time))
logger.log_message(" training loss:\t\t{:.6f}".format(train_err / train_batches))
logger.log_message(" validation loss:\t\t{:.6f}".format(val_err / val_batches))
logger.log_message(" validation accuracy_1:\t\t{:.2f} %".format(val_acc_1 / val_batches * 100))
logger.log_message(" validation accuracy_5:\t\t{:.2f} %".format(val_acc_5 / val_batches * 100))
# Print some statistics
logger.log_stat("{}\t{:.15g}\t{:.15g}\t{:.15g}\t{:.15g}\t{:.15g}\t{:.15g}\n"
.format(epoch, float(sh_lr.get_value()), time.time() - start_time0,
train_err / train_batches, val_err / val_batches,
val_acc_1 / val_batches * 100, val_acc_5 / val_batches * 100))
# Get network parameters and save it
net = {
'u': [p.get_value() for p in updates.keys()],
'w': lasagne.layers.get_all_param_values(network, trainable=False),
'epoch': (epoch+1)
}
# pickle.dump(net, open("network_{}_{}_{}.p".format(lr, irun, epoch+1), 'wb'))
pickle.dump(net, open("network_last_{}_{}.p".format(lr, irun), 'wb'))
# Adjust learning rate
if (epoch+1) == E1 or (epoch+1) == E2 or (epoch+1) == E3:
new_lr = sh_lr.get_value() * lr_fac
logger.log_message("New LR:"+str(new_lr))
sh_lr.set_value(lasagne.utils.floatX(new_lr))
# Calculate validation error of model:
test_err = 0
test_acc_1 = 0
test_acc_5 = 0
test_batches = 0
for batch in iterate_minibatches(X_test, Y_test, 500, shuffle=False):
inputs, targets = batch
err, acc_1, acc_5 = val_fn(inputs, targets)
test_err += err
test_acc_1 += acc_1
test_acc_5 += acc_5
test_batches += 1
logger.log_message("Final results:")
logger.log_message(" test loss:\t\t\t{:.6f}".format(test_err / test_batches))
logger.log_message(" test accuracy 1:\t\t{:.2f} %".format(test_acc_1 / test_batches * 100))
logger.log_message(" test accuracy 5:\t\t{:.2f} %".format(test_acc_5 / test_batches * 100))
def parse_arguments():
parser = ArgumentParser()
parser.add_argument('-s', '--img_size', help="Size of images, represented as string '32x32' or '64x64'",
default=32, type=int)
parser.add_argument('-lr', '--learning_rate', help="Starting Learning Rate, "
"decreased by the factor of 5 every 10 epochs",
default=0.01, type=float)
parser.add_argument('-k', '--network_width', help="Network width hyper-parameter. Number of filters in each layer "
"is multiplied by this factor", default=1, type=float)
parser.add_argument('-r', '--run', help="Number used to index output files, helpful when multiple runs required",
default=1, type=int)
parser.add_argument('-c', '--cont', help="Read last saved model and continue training from that point",
default=False, type=bool)
parser.add_argument('-df', '--data_folder', help="Path to the folder containing training and validation data",
required=True)
parser.add_argument('-d', '--decay', help="L2 decay", default=0.0005, type=float)
args = parser.parse_args()
return args.img_size, args.learning_rate, args.network_width, args.run, args.cont, args.data_folder, args.decay
if __name__ == '__main__':
img_size, lr, k, run, cont, data_folder, reg_fac = parse_arguments()
lr_fac = 0.2
num_epochs = 40
E1 = 10
E2 = 20
E3 = 30
Estart = 10000
n = 4
dropout = 0
main(data_folder, n, run, k, num_epochs, cont, E1, E2, E3, lr, lr_fac, reg_fac, dropout, img_size)