Skip to content

Latest commit

 

History

History
185 lines (146 loc) · 5.68 KB

README.md

File metadata and controls

185 lines (146 loc) · 5.68 KB

ncbiutils

build License codecov Making retrieval of records from National Center for Biotechnology Information (NCBI) E-Utilities simpler.

Installation

Set up a virtual environment. Here, we use miniconda to create an environment named testenv:

$ conda create --name testenv python=3.8
$ conda activate testenv

Then install the package in the testenv environment:

$ pip install ncbiutils

Usage

The ncbiutils module exposes a PubMedFetch class that provides an easy to configure and use wrapper for the EFetch E-Utility. By default, PubMedFetch will retrieve PubMed article records, each indicated by its PubMed identifier (PMID).

from ncbiutils.ncbiutils import PubMedFetch
import json

# Initalize a list of PubMed identifiers for those records we wish to retrieve
uids = ['16186693', '29083299']

# Create an instance, optionally provide an E-Utility API key
pubmed_fetch = PubMedFetch()

# Retrieve the records
# Returns a generator that yields results for a chunk of the input PMIDs (see Options)
chunks = pubmed_fetch.get_citations(uids)

# Iterate over the results
for chunk in chunks:
    # A Chunk is a namedtuple with 3 fields:
    #   - error: Includes network errors as well as HTTP status >=400
    #   - citations: article records, each wrapped as a Citation
    #   - ids: input ids for chunk
    error, citations, ids = chunk

    # Citation class can be represented as a dict
    print(json.dumps(citations[0].dict()))

# Output as JSON
{
   "pmid":"16186693",
   "pmc":"None",
   "doi":"10.1159/000087186",
   "title":"Searching the MEDLINE literature database through PubMed: a short guide.",
   "abstract":"The Medline database from the National Library of Medicine (NLM) contains more than 12 million bibliographic citations from over 4,600 international biomedical journals...",
   "author_list":[
      {
         "fore_name":"Edith",
         "last_name":"Motschall",
         "initials":"E",
         "collective_name":"None",
         "orcid":"None",
         "affiliations":[
            "Institut für Medizinische Biometrie und Medizinische Informatik, Universität Freiburg, Germany. [email protected]"
         ],
         "emails":[
            "motschall@..."
         ]
      },
      ...
   ],
   "journal":{
      "title":"Onkologie",
      "issn":[
         "0378-584X"
      ],
      "volume":"28",
      "issue":"10",
      "pub_year":"2005",
      "pub_month":"Oct",
      "pub_day":"None"
   },
   "publication_type_list":[
      "D016428",
      "D016454"
   ],
   "correspondence":[],
   "mesh_list":[
      {
         "descriptor_name":{
            "ui":"D003628",
            "value":"Database Management Systems"
         }
      },
      {
         "descriptor_name":{
            "ui":"D016206",
            "value":"Databases, Bibliographic"
         }
      },
      {
         "descriptor_name":{
            "ui":"D016247",
            "value":"Information Storage and Retrieval"
         },
         "qualifier_name":[
            {
               "ui":"Q000379",
               "value":"methods"
            }
         ]
      },
     ...
   ]
}

Options

Configure the PubMedFetch instance through its constructor:

  • db: DbEnum
    • Set the database to process either <!DOCTYPE pmc-articleset ...> or <!DOCTYPE PubmedArticleSet ...> (default)
  • retmax : int
    • Maximum number of records to return in a chunk (default/max 10000)
  • api_key : str
    • API key for NCBI E-Utilities

Also available is:

Testing

As this project was built with poetry, you'll need to install poetry to get this project's development dependencies.

Once installed, clone this GitHub remote:

$ git clone https://github.com/PathwayCommons/ncbiutils
$ cd ncbiutils

Install the project:

$ poetry install

Run the test script:

$ ./test.sh

Under the hood, the tests are run with pytest. The test script also does a lint check with flake8 and type check with mypy.

Publishing a release

A GitHub workflow will automatically version and release this package to PyPI following a push directly to main or when a pull request is merged into main. A push/merge to main will automatically bump up the patch version.

We use Python Semantic Release (PSR) to manage versioning. By making a commit with a well-defined message structure, PSR will scan commit messages and bump the version accordingly in accordance with semver.

For a patch bump:

$ git commit -m "fix(ncbiutils): some comment for this patch version"

For a minor bump:

$ git commit -m "feat(ncbiutils): some comment for this minor version bump"

For a release:

$ git commit -m "feat(mod_plotting): some comment for this release\n\nBREAKING CHANGE: other footer text."