-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathrun.py
330 lines (285 loc) · 11.9 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
"""
Copyright (c) 2017 Matterport, Inc.
Licensed under the MIT License (see LICENSE for details)
Written by Waleed Abdulla
# Train a new model starting from pre-trained COCO weights
python3 run.py train --dataset=/path/to/dataset --weights=coco
# Resume training a model that you had trained earlier
python3 run.py train --dataset=/path/to/dataset --weights=last
# Train a new model starting from ImageNet weights
python3 run.py train --dataset=/path/to/dataset --weights=imagenet
# Apply color mask to an image
python3 run.py mask --weights=/path/to/weights/file.h5 --image=<URL or path to file>
# Apply color mask to video using the last weights you trained
python3 run.py mask --weights=last --video=<URL or path to file>
"""
import os
import sys
import json
import datetime
import numpy as np
import skimage.draw
import cv2
from mrcnn.visualize import display_instances
import matplotlib.pyplot as plt
# Root directory of the project
ROOT_DIR = os.path.abspath("./")
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn.config import Config
from mrcnn import model as modellib, utils
# Path to trained weights file
COCO_WEIGHTS_PATH = os.path.join(ROOT_DIR, "./mask_rcnn_coco.h5")
# Directory to save logs and model checkpoints, if not provided
# through the command line argument --logs
DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs")
############################################################
# Configurations
############################################################
class CustomConfig(Config):
"""Configuration for training on the Hair dataset.
Derives from the base Config class and overrides some values.
"""
# Give the configuration a recognizable name
NAME = "Hair"
# Running on CPU
IMAGES_PER_GPU = 1
# Number of classes (including background)
NUM_CLASSES = 1 + 1 # Background + Hair
# Number of training steps per epoch
STEPS_PER_EPOCH = 10
# Skip detections with < 90% confidence
DETECTION_MIN_CONFIDENCE = 0.9
############################################################
# Dataset
############################################################
class CustomDataset(utils.Dataset):
def load_custom(self, dataset_dir, subset):
# Add classes. We have only one class to add.
self.add_class("Hair", 1, "Hair")
dataset_dir = os.path.join(dataset_dir, subset)
for filename in os.listdir(os.path.join(dataset_dir, 'photos')):
if not filename.endswith('jpg'): #Only jpg photos from dataset
continue
input_path = os.path.join(dataset_dir, 'photos',filename)
img = cv2.imread(input_path)
height, width = img.shape[:2]
self.add_image(
"Hair", # for a single class just add the name here
image_id=filename, # use file name as a unique image id
path= input_path,
width=width, height=height)
def load_mask(self,image_id):
"""Generate instance masks for an image from database.
Returns:
masks: A bool array of shape [height, width, instance count] with
one mask per instance.
"""
image_info = self.image_info[image_id]
if image_info["source"] != "Hair":
return super(self.__class__, self).load_mask(image_id)
info = self.image_info[image_id]
if info['id'].startswith('v'): # If validation mask or training
dataset_dir = os.path.join(args.dataset, 'val')
else:
dataset_dir = os.path.join(args.dataset, 'train')
for maskf in os.listdir(os.path.join(dataset_dir, 'masks')):
mname,png = os.path.splitext(maskf)
iname,jpg = os.path.splitext(info['id'])
if mname == iname:
mask=cv2.imread(os.path.join(dataset_dir, 'masks',maskf)) # Reading mask data from dataset
# Return mask, and array of class IDs of each instance. Since we have
# one class ID only, we return an array of 1s
return mask.astype(np.bool), np.ones([mask.shape[-1]], dtype=np.int32)
def image_reference(self, image_id):
"""Return the path of the image."""
info = self.image_info[image_id]
if info["source"] == "Hair":
return info["path"]
else:
super(self.__class__, self).image_reference(image_id)
def train(model):
"""Train the model."""
# Training dataset.
dataset_train = CustomDataset()
dataset_train.load_custom(args.dataset, "train")
dataset_train.prepare()
# Validation dataset
dataset_val = CustomDataset()
dataset_val.load_custom(args.dataset, "val")
dataset_val.prepare()
# *** This training schedule is an example. Update to your needs ***
# Training - Stage 1
print("Training network heads")
model.train(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=60,
layers='heads')
# Training - Stage 2
# Finetune layers from ResNet stage 4 and up
print("Fine tune Resnet stage 4 and up")
model.train(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=140,
layers='4+')
# Training - Stage 3
# Fine tune all layers
print("Fine tune all layers")
model.train(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE / 10,
epochs=220,
layers='all')
def apply_mask(image, mask):
"""Apply color splash effect.
image: RGB image [height, width, 3]
mask: instance segmentation mask [height, width, instance count]
Returns result image.
"""
# Make a grayscale copy of the image. The grayscale copy still
# has 3 RGB channels, though.
blank = np.zeros(image.shape, dtype=np.uint8)
# Copy color pixels from the original color image where mask is set
if mask.shape[-1] > 0:
# We're treating all instances as one, so collapse the mask into one layer
mask = (np.sum(mask, -1, keepdims=True) >= 1)
crop = np.where(mask, image, blank).astype(np.uint8)
else:
crop = blank.astype(np.uint8)
return crop
def detect_and_mask(model, image_path=None, video_path=None):
assert image_path or video_path
if image_path:
import cv2
# Run model detection and generate the mask
print("Running on {}".format(args.image))
# Read image
image = cv2.imread(args.image)
# Detect objects
image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
r = model.detect([image], verbose=1)[0]
# Mask
crop = apply_mask(image, r['masks'])
# Save output
crop = cv2.cvtColor(crop,cv2.COLOR_RGB2BGR)
file_name = "crop_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now())
cv2.imwrite(file_name,crop)
elif video_path:
import cv2
# Video capture
vcapture = cv2.VideoCapture(video_path)
width = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = vcapture.get(cv2.CAP_PROP_FPS)
# Define codec and create video writer
file_name = "crop_{:%Y%m%dT%H%M%S}.avi".format(datetime.datetime.now())
vwriter = cv2.VideoWriter(file_name,
cv2.VideoWriter_fourcc(*'MJPG'),
fps, (width, height))
count = 0
success = True
while success:
print("frame: ", count)
# Read next image
success, image = vcapture.read()
if success:
# OpenCV returns images as BGR, convert to RGB
image = image[..., ::-1]
# Detect objects
r = model.detect([image], verbose=0)[0]
# Color splash
crop = apply_mask(image, r['masks'])
# RGB -> BGR to save image to video
crop = crop[..., ::-1]
# Add image to video writer
vwriter.write(crop)
count += 1
vwriter.release()
print("Saved to ", file_name)
############################################################
# Training
############################################################
if __name__ == '__main__':
import argparse
# Parse command line arguments
parser = argparse.ArgumentParser(
description='Train Mask R-CNN to detect custom class.')
parser.add_argument("command",
metavar="<command>",
help="'train' or 'mask'")
parser.add_argument('--dataset', required=False,
metavar="/path/to/custom/dataset/",
help='Directory of the custom dataset')
parser.add_argument('--weights', required=True,
metavar="/path/to/weights.h5",
help="Path to weights .h5 file or 'coco'")
parser.add_argument('--logs', required=False,
default=DEFAULT_LOGS_DIR,
metavar="/path/to/logs/",
help='Logs and checkpoints directory (default=logs/)')
parser.add_argument('--image', required=False,
metavar="path or URL to image",
help='Image to apply the color mask effect on')
parser.add_argument('--video', required=False,
metavar="path or URL to video",
help='Video to apply the color mask effect on')
args = parser.parse_args()
# Validate arguments
if args.command == "train":
assert args.dataset, "Argument --dataset is required for training"
elif args.command == "mask":
assert args.image or args.video,\
"Provide --image or --video to apply color mask"
print("Weights: ", args.weights)
print("Dataset: ", args.dataset)
print("Logs: ", args.logs)
# Configurations
if args.command == "train":
config = CustomConfig()
else:
class InferenceConfig(CustomConfig):
# Set batch size to 1 since we'll be running inference on
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1
config = InferenceConfig()
config.display()
# Create model
if args.command == "train":
model = modellib.MaskRCNN(mode="training", config=config,
model_dir=args.logs)
else:
model = modellib.MaskRCNN(mode="inference", config=config,
model_dir=args.logs)
# Select weights file to load
if args.weights.lower() == "coco":
weights_path = COCO_WEIGHTS_PATH
# Download weights file
if not os.path.exists(weights_path):
utils.download_trained_weights(weights_path)
elif args.weights.lower() == "last":
# Find last trained weights
weights_path = model.find_last()[1]
elif args.weights.lower() == "imagenet":
# Start from ImageNet trained weights
weights_path = model.get_imagenet_weights()
else:
weights_path = args.weights
# Load weights
print("Loading weights ", weights_path)
if args.weights.lower() == "coco":
# Exclude the last layers because they require a matching
# number of classes
model.load_weights(weights_path, by_name=True, exclude=[
"mrcnn_class_logits", "mrcnn_bbox_fc",
"mrcnn_bbox", "mrcnn_mask"])
else:
model.load_weights(weights_path, by_name=True)
# Train or evaluate
if args.command == "train":
train(model)
elif args.command == "mask":
detect_and_mask(model, image_path=args.image,
video_path=args.video)
else:
print("'{}' is not recognized. "
"Use 'train' or 'mask'".format(args.command))