Skip to content
This repository has been archived by the owner on Jan 24, 2024. It is now read-only.

08.machine_translation infer时报错 #747

Open
Alanyh opened this issue Jun 16, 2019 · 2 comments
Open

08.machine_translation infer时报错 #747

Alanyh opened this issue Jun 16, 2019 · 2 comments
Assignees

Comments

@Alanyh
Copy link

Alanyh commented Jun 16, 2019

代码使用train.py中的代码,但是数据集是自己的,训练完成了,但是infer时报错:
EnforceNotMet: Invoke operator sequence_expand error.

C++ Callstacks:
DataType of Paddle Op sequence_expand Y must be the same. Get (float) != (int64_t) at [/paddle/paddle/fluid/framework/operator.cc:1115]

from future import print_function
import os
import six

import numpy as np
import paddle
import paddle.fluid as fluid

dict_size = 29364
source_dict_size = target_dict_size = dict_size
word_dim = 512
hidden_dim = 512
decoder_size = hidden_dim
max_length = 256
beam_size = 4
batch_size = 64

is_sparse = True
model_save_dir = "1_machine_translation.inference.model"

def encoder():
src_word_id = fluid.layers.data(
name="src_word_id", shape=[1], dtype='int64', lod_level=1)
src_embedding = fluid.layers.embedding(
input=src_word_id,
size=[source_dict_size, word_dim],
dtype='float32',
is_sparse=is_sparse,param_attr='shared_w')

fc_forward = fluid.layers.fc(
input=src_embedding, size=hidden_dim * 3, bias_attr=False)
src_forward = fluid.layers.dynamic_gru(input=fc_forward, size=hidden_dim)
fc_backward = fluid.layers.fc(
input=src_embedding, size=hidden_dim * 3, bias_attr=False)
src_backward = fluid.layers.dynamic_gru(
input=fc_backward, size=hidden_dim, is_reverse=True)
encoded_vector = fluid.layers.concat(
input=[src_forward, src_backward], axis=1)
return encoded_vector
def cell(x, hidden, encoder_out, encoder_out_proj):
def simple_attention(encoder_vec, encoder_proj, decoder_state):
decoder_state_proj = fluid.layers.fc(
input=decoder_state, size=decoder_size, bias_attr=False)
decoder_state_expand = fluid.layers.sequence_expand(
x=decoder_state_proj, y=encoder_proj)
mixed_state = fluid.layers.elementwise_add(encoder_proj,
decoder_state_expand)
attention_weights = fluid.layers.fc(
input=mixed_state, size=1, bias_attr=False)
attention_weights = fluid.layers.sequence_softmax(
input=attention_weights)
weigths_reshape = fluid.layers.reshape(x=attention_weights, shape=[-1])
scaled = fluid.layers.elementwise_mul(
x=encoder_vec, y=weigths_reshape, axis=0)
context = fluid.layers.sequence_pool(input=scaled, pool_type='sum')
return context

context = simple_attention(encoder_out, encoder_out_proj, hidden)
out = fluid.layers.fc(
input=[x, context], size=decoder_size * 3, bias_attr=False)
out = fluid.layers.gru_unit(
input=out, hidden=hidden, size=decoder_size * 3)[0]
return out, out
def train_decoder(encoder_out):
encoder_last = fluid.layers.sequence_last_step(input=encoder_out)
encoder_last_proj = fluid.layers.fc(
input=encoder_last, size=decoder_size, act='tanh')

cache the encoder_out's computed result in attention

encoder_out_proj = fluid.layers.fc(
input=encoder_out, size=decoder_size, bias_attr=False)

trg_language_word = fluid.layers.data(
name="target_language_word", shape=[1], dtype='int64', lod_level=1)
trg_embedding = fluid.layers.embedding(
input=trg_language_word,
size=[target_dict_size, word_dim],
dtype='float32',
is_sparse=is_sparse,param_attr='shared_w')

rnn = fluid.layers.DynamicRNN()
with rnn.block():
x = rnn.step_input(trg_embedding)
pre_state = rnn.memory(init=encoder_last_proj, need_reorder=True)
encoder_out = rnn.static_input(encoder_out)
encoder_out_proj = rnn.static_input(encoder_out_proj)
out, current_state = cell(x, pre_state, encoder_out, encoder_out_proj)
prob = fluid.layers.fc(input=out, size=target_dict_size, act='softmax')

rnn.update_memory(pre_state, current_state)
rnn.output(prob)

return rnn()
def train_model():
encoder_out = encoder()
rnn_out = train_decoder(encoder_out)
label = fluid.layers.data(
name="target_language_next_word", shape=[1], dtype='int64', lod_level=1)
cost = fluid.layers.cross_entropy(input=rnn_out, label=label)
avg_cost = fluid.layers.mean(cost)
return avg_cost

def optimizer_func():
fluid.clip.set_gradient_clip(
clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0))
lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(hidden_dim, 1000)
return fluid.optimizer.Adam(
learning_rate=lr_decay,
regularization=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=1e-4))

def train(use_cuda):
train_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(train_prog, startup_prog):
with fluid.unique_name.guard():
avg_cost = train_model()
optimizer = optimizer_func()
optimizer.minimize(avg_cost)

place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
#fluid.io.load_params(exe, model_save_dir, main_program=train_prog)

train_data = paddle.batch(
paddle.reader.shuffle(
train_reader1, buf_size=100000),
batch_size=batch_size)

feeder = fluid.DataFeeder(
feed_list=[
'src_word_id', 'target_language_word', 'target_language_next_word'
],
place=place,
program=train_prog)

exe.run(startup_prog)

EPOCH_NUM = 20
for pass_id in six.moves.xrange(EPOCH_NUM):
batch_id = 0
for data in train_data():
cost = exe.run(
train_prog, feed=feeder.feed(data), fetch_list=[avg_cost])[0]
print('pass_id: %d, batch_id: %d, loss: %f' % (pass_id, batch_id,
cost))
batch_id += 1
fluid.io.save_params(exe, model_save_dir, main_program=train_prog)
def infer_decoder(encoder_out):
encoder_last = fluid.layers.sequence_last_step(input=encoder_out)
encoder_last_proj = fluid.layers.fc(
input=encoder_last, size=decoder_size, act='tanh')
encoder_out_proj = fluid.layers.fc(
input=encoder_out, size=decoder_size, bias_attr=False)

max_len = fluid.layers.fill_constant(
shape=[1], dtype='int64', value=max_length)
counter = fluid.layers.zeros(shape=[1], dtype='int64', force_cpu=True)

init_ids = fluid.layers.data(
name="init_ids", shape=[1], dtype="int64", lod_level=2)
init_scores = fluid.layers.data(
name="init_scores", shape=[1], dtype="float32", lod_level=2)

create and init arrays to save selected ids, scores and states for each step

ids_array = fluid.layers.array_write(init_ids, i=counter)
scores_array = fluid.layers.array_write(init_scores, i=counter)
state_array = fluid.layers.array_write(encoder_last_proj, i=counter)

cond = fluid.layers.less_than(x=counter, y=max_len)
while_op = fluid.layers.While(cond=cond)
with while_op.block():
pre_ids = fluid.layers.array_read(array=ids_array, i=counter)
pre_score = fluid.layers.array_read(array=scores_array, i=counter)
pre_state = fluid.layers.array_read(array=state_array, i=counter)

pre_ids_emb = fluid.layers.embedding(
    input=pre_ids,
    size=[target_dict_size, word_dim],
    dtype='float32',
    is_sparse=is_sparse,param_attr='shared_w')
out, current_state = cell(pre_ids_emb, pre_state, encoder_out,
                          encoder_out_proj)
prob = fluid.layers.fc(
    input=current_state, size=target_dict_size, act='softmax')

# beam search
topk_scores, topk_indices = fluid.layers.topk(prob, k=beam_size)
accu_scores = fluid.layers.elementwise_add(
    x=fluid.layers.log(topk_scores),
    y=fluid.layers.reshape(pre_score, shape=[-1]),
    axis=0)
accu_scores = fluid.layers.lod_reset(x=accu_scores, y=pre_ids)
selected_ids, selected_scores = fluid.layers.beam_search(
    pre_ids, pre_score, topk_indices, accu_scores, beam_size, end_id=1)

fluid.layers.increment(x=counter, value=1, in_place=True)
# save selected ids and corresponding scores of each step
fluid.layers.array_write(selected_ids, array=ids_array, i=counter)
fluid.layers.array_write(selected_scores, array=scores_array, i=counter)
# update rnn state by sequence_expand acting as gather
current_state = fluid.layers.sequence_expand(current_state,
                                             selected_ids)
fluid.layers.array_write(current_state, array=state_array, i=counter)
current_enc_out = fluid.layers.sequence_expand(encoder_out,
                                               selected_ids)
fluid.layers.assign(current_enc_out, encoder_out)
current_enc_out_proj = fluid.layers.sequence_expand(encoder_out_proj,
                                                    selected_ids)
fluid.layers.assign(current_enc_out_proj, encoder_out_proj)

# update conditional variable
length_cond = fluid.layers.less_than(x=counter, y=max_len)
finish_cond = fluid.layers.logical_not(
    fluid.layers.is_empty(x=selected_ids))
fluid.layers.logical_and(x=length_cond, y=finish_cond, out=cond)

translation_ids, translation_scores = fluid.layers.beam_search_decode(
ids=ids_array, scores=scores_array, beam_size=beam_size, end_id=1)

return translation_ids, translation_scores
def infer_model():
encoder_out = encoder()
translation_ids, translation_scores = infer_decoder(encoder_out)
return translation_ids, translation_scores

def infer(use_cuda):
infer_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(infer_prog, startup_prog):
with fluid.unique_name.guard():
translation_ids, translation_scores = infer_model()

place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)

test_data = paddle.batch(
test_reader,
batch_size=batch_size)
src_idx2word = reverse_vocab
trg_idx2word = reverse_vocab

fluid.io.load_params(exe, model_save_dir, main_program=infer_prog)

for data in test_data():
src_word_id = fluid.create_lod_tensor(
data=[x[0] for x in data],
recursive_seq_lens=[[len(x[0]) for x in data]],
place=place)
init_ids = fluid.create_lod_tensor(
data=np.array([[0]] * len(data), dtype='int64'),
recursive_seq_lens=[[1] * len(data)] * 2,
place=place)
init_scores = fluid.create_lod_tensor(
data=np.array([[0.]] * len(data), dtype='float32'),
recursive_seq_lens=[[1] * len(data)] * 2,
place=place)
seq_ids, seq_scores = exe.run(
infer_prog,
feed={
'src_word_id': src_word_id,
'init_ids': init_ids,
'init_scores': init_scores
},
fetch_list=[translation_ids, translation_scores],
return_numpy=False)
# How to parse the results:
# Suppose the lod of seq_ids is:
# [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]]
# then from lod[0]:
# there are 2 source sentences, beam width is 3.
# from lod[1]:
# the first source sentence has 3 hyps; the lengths are 12, 12, 16
# the second source sentence has 3 hyps; the lengths are 14, 13, 15
hyps = [[] for i in range(len(seq_ids.lod()[0]) - 1)]
scores = [[] for i in range(len(seq_scores.lod()[0]) - 1)]
for i in range(len(seq_ids.lod()[0]) - 1): # for each source sentence
start = seq_ids.lod()[0][i]
end = seq_ids.lod()[0][i + 1]
print("Original sentence:")
print(" ".join([src_idx2word[idx] for idx in data[i][0][1:-1]]))
print("Translated score and sentence:")
for j in range(end - start): # for each candidate
sub_start = seq_ids.lod()[1][start + j]
sub_end = seq_ids.lod()[1][start + j + 1]
hyps[i].append(" ".join([
trg_idx2word[idx]
for idx in np.array(seq_ids)[sub_start:sub_end][1:-1]
]))
scores[i].append(np.array(seq_scores)[sub_end - 1])
print(scores[i][-1], hyps[i][-1].encode('utf8'))
def main(use_cuda):
train(use_cuda)
#infer(use_cuda)

if name == 'main':
use_cuda = False # set to True if training with GPU
main(use_cuda)
#infer(use_cuda)

@guoshengCS
Copy link
Contributor

请问使用的Paddle版本是什么

@Alanyh
Copy link
Author

Alanyh commented Jun 19, 2019

请问使用的Paddle版本是什么

paddle版本是1.4.1,python是3.5。尝试了初期的没有加入注意力机制的模型,训练出来是可以翻译的,数据集应该没问题。

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants