We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
配置文件 Global: model_dir: MobileNetV1_infer model_filename: /home/ai/zgr/classification/MobileNetV4/output/resnet18_pd_1/inference_model/model.pdmodel params_filename: /home/ai/zgr/classification/MobileNetV4/output/resnet18_pd_1/inference_model/model.pdiparams batch_size: 1 data_dir: /home/ai/zgr/model_cut/data/flower_datasets
Distillation: alpha: 1.0 loss: l2
TrainConfig: epochs: 1 eval_iter: 500 learning_rate: type: CosineAnnealingDecay learning_rate: 0.015 optimizer_builder: optimizer: type: Momentum weight_decay: 0.00002 origin_metric: 0.9664429530201343
The text was updated successfully, but these errors were encountered:
wanghaoshuang
No branches or pull requests
原模型精度挺高的 但使用蒸馏训练后模型精度就不对了 把模型输出结果打印出来看后发现不同输入都会得到同一个输出 大佬帮忙看看什么原因呢
训练过程中的输出
2024-11-07 09:50:47,799-INFO: start to test metric before compress
Evaluation stage, Run batch:|██████████████████████████████████████████| 447/447
2024-11-07 09:50:49,434-INFO: metric of compressed model is: 0.9664429530201343
2024-11-07 09:50:49,726-INFO: train config.distill_node_pair: ['teacher_elementwise_add_0', 'elementwise_add_0']
I1107 09:50:50.019730 3462931 interpreter_util.cc:648] Standalone Executor is Used.
2024-11-07 09:50:50,217-INFO: Total iter: 0, epoch: 0, batch: 0, loss: 6.939813137054443 l2: 6.939813137054443
2024-11-07 09:50:50,312-INFO: Total iter: 10, epoch: 0, batch: 10, loss: 6.67962646484375 l2: 6.67962646484375
2024-11-07 09:50:50,405-INFO: Total iter: 20, epoch: 0, batch: 20, loss: 4.862423419952393 l2: 4.862423419952393
2024-11-07 09:50:50,498-INFO: Total iter: 30, epoch: 0, batch: 30, loss: 5.843245506286621 l2: 5.843245506286621
2024-11-07 09:50:50,591-INFO: Total iter: 40, epoch: 0, batch: 40, loss: 1.7612680196762085 l2: 1.7612680196762085
2024-11-07 09:50:50,685-INFO: Total iter: 50, epoch: 0, batch: 50, loss: 3.830599308013916 l2: 3.830599308013916
2024-11-07 09:50:50,781-INFO: Total iter: 60, epoch: 0, batch: 60, loss: 2.4715871810913086 l2: 2.4715871810913086
2024-11-07 09:50:50,873-INFO: Total iter: 70, epoch: 0, batch: 70, loss: 3.5432209968566895 l2: 3.5432209968566895
2024-11-07 09:50:50,967-INFO: Total iter: 80, epoch: 0, batch: 80, loss: 0.6653429865837097 l2: 0.6653429865837097
2024-11-07 09:50:51,064-INFO: Total iter: 90, epoch: 0, batch: 90, loss: 2.188952922821045 l2: 2.188952922821045
2024-11-07 09:50:51,166-INFO: Total iter: 100, epoch: 0, batch: 100, loss: 2.6419882774353027 l2: 2.6419882774353027
2024-11-07 09:50:51,262-INFO: Total iter: 110, epoch: 0, batch: 110, loss: 3.7801308631896973 l2: 3.7801308631896973
2024-11-07 09:50:51,355-INFO: Total iter: 120, epoch: 0, batch: 120, loss: 0.8452658653259277 l2: 0.8452658653259277
2024-11-07 09:50:51,449-INFO: Total iter: 130, epoch: 0, batch: 130, loss: 0.6925385594367981 l2: 0.6925385594367981
2024-11-07 09:50:51,546-INFO: Total iter: 140, epoch: 0, batch: 140, loss: 1.122310996055603 l2: 1.122310996055603
2024-11-07 09:50:51,640-INFO: Total iter: 150, epoch: 0, batch: 150, loss: 1.561903953552246 l2: 1.561903953552246
2024-11-07 09:50:51,735-INFO: Total iter: 160, epoch: 0, batch: 160, loss: 1.165655493736267 l2: 1.165655493736267
2024-11-07 09:50:51,830-INFO: Total iter: 170, epoch: 0, batch: 170, loss: 1.6543434858322144 l2: 1.6543434858322144
2024-11-07 09:50:51,924-INFO: Total iter: 180, epoch: 0, batch: 180, loss: 2.673067808151245 l2: 2.673067808151245
2024-11-07 09:50:52,017-INFO: Total iter: 190, epoch: 0, batch: 190, loss: 0.8985536098480225 l2: 0.8985536098480225
2024-11-07 09:50:52,110-INFO: Total iter: 200, epoch: 0, batch: 200, loss: 1.004972219467163 l2: 1.004972219467163
2024-11-07 09:50:52,203-INFO: Total iter: 210, epoch: 0, batch: 210, loss: 1.3521126508712769 l2: 1.3521126508712769
2024-11-07 09:50:52,296-INFO: Total iter: 220, epoch: 0, batch: 220, loss: 1.9136583805084229 l2: 1.9136583805084229
2024-11-07 09:50:52,390-INFO: Total iter: 230, epoch: 0, batch: 230, loss: 1.0522427558898926 l2: 1.0522427558898926
2024-11-07 09:50:52,483-INFO: Total iter: 240, epoch: 0, batch: 240, loss: 1.7291829586029053 l2: 1.7291829586029053
2024-11-07 09:50:52,577-INFO: Total iter: 250, epoch: 0, batch: 250, loss: 1.1346322298049927 l2: 1.1346322298049927
2024-11-07 09:50:52,670-INFO: Total iter: 260, epoch: 0, batch: 260, loss: 1.5537294149398804 l2: 1.5537294149398804
2024-11-07 09:50:52,765-INFO: Total iter: 270, epoch: 0, batch: 270, loss: 1.1103237867355347 l2: 1.1103237867355347
2024-11-07 09:50:52,859-INFO: Total iter: 280, epoch: 0, batch: 280, loss: 1.165198564529419 l2: 1.165198564529419
2024-11-07 09:50:52,953-INFO: Total iter: 290, epoch: 0, batch: 290, loss: 1.611351728439331 l2: 1.611351728439331
2024-11-07 09:50:53,047-INFO: Total iter: 300, epoch: 0, batch: 300, loss: 2.0881824493408203 l2: 2.0881824493408203
2024-11-07 09:50:53,140-INFO: Total iter: 310, epoch: 0, batch: 310, loss: 1.252273678779602 l2: 1.252273678779602
2024-11-07 09:50:53,234-INFO: Total iter: 320, epoch: 0, batch: 320, loss: 1.1105802059173584 l2: 1.1105802059173584
2024-11-07 09:50:53,327-INFO: Total iter: 330, epoch: 0, batch: 330, loss: 1.5239158868789673 l2: 1.5239158868789673
2024-11-07 09:50:53,420-INFO: Total iter: 340, epoch: 0, batch: 340, loss: 1.9464023113250732 l2: 1.9464023113250732
2024-11-07 09:50:53,514-INFO: Total iter: 350, epoch: 0, batch: 350, loss: 0.2952193021774292 l2: 0.2952193021774292
2024-11-07 09:50:53,608-INFO: Total iter: 360, epoch: 0, batch: 360, loss: 0.6373522877693176 l2: 0.6373522877693176
2024-11-07 09:50:53,709-INFO: Total iter: 370, epoch: 0, batch: 370, loss: 0.74739009141922 l2: 0.74739009141922
2024-11-07 09:50:53,810-INFO: Total iter: 380, epoch: 0, batch: 380, loss: 1.026517629623413 l2: 1.026517629623413
2024-11-07 09:50:53,905-INFO: Total iter: 390, epoch: 0, batch: 390, loss: 1.248557448387146 l2: 1.248557448387146
2024-11-07 09:50:53,999-INFO: Total iter: 400, epoch: 0, batch: 400, loss: 0.1199449747800827 l2: 0.1199449747800827
2024-11-07 09:50:54,093-INFO: Total iter: 410, epoch: 0, batch: 410, loss: 1.060091257095337 l2: 1.060091257095337
2024-11-07 09:50:54,187-INFO: Total iter: 420, epoch: 0, batch: 420, loss: 0.37600892782211304 l2: 0.37600892782211304
2024-11-07 09:50:54,281-INFO: Total iter: 430, epoch: 0, batch: 430, loss: 1.43874990940094 l2: 1.43874990940094
2024-11-07 09:50:54,374-INFO: Total iter: 440, epoch: 0, batch: 440, loss: 1.549577236175537 l2: 1.549577236175537
2024-11-07 09:50:54,467-INFO: Total iter: 450, epoch: 0, batch: 450, loss: 1.316918134689331 l2: 1.316918134689331
2024-11-07 09:50:54,560-INFO: Total iter: 460, epoch: 0, batch: 460, loss: 2.0584702491760254 l2: 2.0584702491760254
2024-11-07 09:50:54,653-INFO: Total iter: 470, epoch: 0, batch: 470, loss: 2.3895020484924316 l2: 2.3895020484924316
2024-11-07 09:50:54,747-INFO: Total iter: 480, epoch: 0, batch: 480, loss: 0.838370680809021 l2: 0.838370680809021
2024-11-07 09:50:54,843-INFO: Total iter: 490, epoch: 0, batch: 490, loss: 1.3764344453811646 l2: 1.3764344453811646
Evaluation stage, Run batch:|██████████████████████████████████████████| 447/447
2024-11-07 09:50:56,525-INFO: epoch: 0 metric of compressed model is: 0.252796, best metric of compressed model is 0.252796
配置文件
Global:
model_dir: MobileNetV1_infer
model_filename: /home/ai/zgr/classification/MobileNetV4/output/resnet18_pd_1/inference_model/model.pdmodel
params_filename: /home/ai/zgr/classification/MobileNetV4/output/resnet18_pd_1/inference_model/model.pdiparams
batch_size: 1
data_dir: /home/ai/zgr/model_cut/data/flower_datasets
ChannelPrune:
pruned_ratio: 0.1
prune_params_name:
- conv2d_0.w_0
criterion: l1_norm
Distillation:
alpha: 1.0
loss: l2
TrainConfig:
epochs: 1
eval_iter: 500
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.015
optimizer_builder:
optimizer:
type: Momentum
weight_decay: 0.00002
origin_metric: 0.9664429530201343
The text was updated successfully, but these errors were encountered: