You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
RuntimeError: The size of tensor a (84900) must match the size of tensor b (7126) at non-singleton dimension 0
{
"name": "RuntimeError",
"message": "The size of tensor a (84900) must match the size of tensor b (7126) at non-singleton dimension 0",
"stack": "---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
Cell In[87], line 21
19 model.train()
20 optimizer.zero_grad()
---> 21 log_logits = model(data.x, data.edge_index)
22 loss = F.nll_loss(log_logits, data.y)
23 loss.backward()
File ~/Desktop/Extras/Graph-Neural-Network/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1562, in Module._call_impl(self, *args, **kwargs)
1557 # If we don't have any hooks, we want to skip the rest of the logic in
1558 # this function, and just call forward.
1559 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1560 or _global_backward_pre_hooks or _global_backward_hooks
1561 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1562 return forward_call(*args, **kwargs)
1564 try:
1565 result = None
Cell In[87], line 8, in GCN.forward(self, x, edge_index)
7 def forward(self, x, edge_index):
----> 8 h = self.conv1(x, edge_index).relu()
9 h = F.dropout(h, p=0.5, training=self.training)
10 h = self.conv2(h, edge_index)
File ~/Desktop/Extras/Graph-Neural-Network/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1562, in Module._call_impl(self, *args, **kwargs)
1557 # If we don't have any hooks, we want to skip the rest of the logic in
1558 # this function, and just call forward.
1559 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1560 or _global_backward_pre_hooks or _global_backward_hooks
1561 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1562 return forward_call(*args, **kwargs)
1564 try:
1565 result = None
Cell In[11], line 20, in GCNConv.forward(self, x, edge_index)
17 deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
18 norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]
---> 20 out = self.propagate(edge_index, x=x, norm=norm)
22 return out
File ~/Desktop/Extras/Graph-Neural-Network/.venv/lib/python3.12/site-packages/torch_geometric/nn/conv/message_passing.py:523, in MessagePassing.propagate(self, edge_index, size, **kwargs)
521 if res is not None:
522 msg_kwargs = res[0] if isinstance(res, tuple) else res
--> 523 out = self.message(**msg_kwargs)
524 for hook in self._message_forward_hooks.values():
525 res = hook(self, (msg_kwargs, ), out)
Cell In[11], line 25, in GCNConv.message(self, x, norm)
24 def message(self, x, norm):
---> 25 return norm.view(-1, 1) * x
RuntimeError: The size of tensor a (84900) must match the size of tensor b (7126) at non-singleton dimension 0"
}
The text was updated successfully, but these errors were encountered:
I am receiving the following error:
RuntimeError: The size of tensor a (84900) must match the size of tensor b (7126) at non-singleton dimension 0
{
"name": "RuntimeError",
"message": "The size of tensor a (84900) must match the size of tensor b (7126) at non-singleton dimension 0",
"stack": "---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
Cell In[87], line 21
19 model.train()
20 optimizer.zero_grad()
---> 21 log_logits = model(data.x, data.edge_index)
22 loss = F.nll_loss(log_logits, data.y)
23 loss.backward()
File ~/Desktop/Extras/Graph-Neural-Network/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1553, in Module._wrapped_call_impl(self, *args, **kwargs)
1551 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
1552 else:
-> 1553 return self._call_impl(*args, **kwargs)
File ~/Desktop/Extras/Graph-Neural-Network/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1562, in Module._call_impl(self, *args, **kwargs)
1557 # If we don't have any hooks, we want to skip the rest of the logic in
1558 # this function, and just call forward.
1559 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1560 or _global_backward_pre_hooks or _global_backward_hooks
1561 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1562 return forward_call(*args, **kwargs)
1564 try:
1565 result = None
Cell In[87], line 8, in GCN.forward(self, x, edge_index)
7 def forward(self, x, edge_index):
----> 8 h = self.conv1(x, edge_index).relu()
9 h = F.dropout(h, p=0.5, training=self.training)
10 h = self.conv2(h, edge_index)
File ~/Desktop/Extras/Graph-Neural-Network/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1553, in Module._wrapped_call_impl(self, *args, **kwargs)
1551 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
1552 else:
-> 1553 return self._call_impl(*args, **kwargs)
File ~/Desktop/Extras/Graph-Neural-Network/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1562, in Module._call_impl(self, *args, **kwargs)
1557 # If we don't have any hooks, we want to skip the rest of the logic in
1558 # this function, and just call forward.
1559 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1560 or _global_backward_pre_hooks or _global_backward_hooks
1561 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1562 return forward_call(*args, **kwargs)
1564 try:
1565 result = None
Cell In[11], line 20, in GCNConv.forward(self, x, edge_index)
17 deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
18 norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]
---> 20 out = self.propagate(edge_index, x=x, norm=norm)
22 return out
File ~/Desktop/Extras/Graph-Neural-Network/.venv/lib/python3.12/site-packages/torch_geometric/nn/conv/message_passing.py:523, in MessagePassing.propagate(self, edge_index, size, **kwargs)
521 if res is not None:
522 msg_kwargs = res[0] if isinstance(res, tuple) else res
--> 523 out = self.message(**msg_kwargs)
524 for hook in self._message_forward_hooks.values():
525 res = hook(self, (msg_kwargs, ), out)
Cell In[11], line 25, in GCNConv.message(self, x, norm)
24 def message(self, x, norm):
---> 25 return norm.view(-1, 1) * x
RuntimeError: The size of tensor a (84900) must match the size of tensor b (7126) at non-singleton dimension 0"
}
The text was updated successfully, but these errors were encountered: