forked from LORD-MicroStrain/mip_sdk
-
Notifications
You must be signed in to change notification settings - Fork 1
/
watch_imu.cpp
189 lines (149 loc) · 6.79 KB
/
watch_imu.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#include "example_utils.hpp"
#include <mip/mip_result.h>
#include <mip/mip_dispatch.h>
#include <mip/utils/serialization.h>
#include <mip/definitions/commands_base.hpp>
#include <mip/definitions/commands_3dm.hpp>
#include <mip/definitions/data_sensor.hpp>
#include <mip/mip.hpp>
#include <stdexcept>
#include <thread>
#include <array>
#define __STDC_FORMAT_MACROS 1
#include <cinttypes>
mip::data_sensor::ScaledAccel scaled_accel;
void handlePacket(void*, const mip::PacketRef& packet, mip::Timestamp timestamp)
{
// if(packet.descriptorSet() != mip::MIP_SENSOR_DATA_DESC_SET)
// return;
printf("\nGot packet with descriptor set 0x%02X:", packet.descriptorSet());
for(mip::Field field : packet)
printf(" %02X", field.fieldDescriptor());
printf("\n");
}
void handleAccel(void*, const mip::Field& field, mip::Timestamp timestamp)
{
mip::data_sensor::ScaledAccel data;
if( field.extract(data) )
{
// Compute delta from last packet (the extractor runs after this, so scaled_accel is one packet behind).
float delta[3] = {
data.scaled_accel[0] - scaled_accel.scaled_accel[0],
data.scaled_accel[1] - scaled_accel.scaled_accel[1],
data.scaled_accel[2] - scaled_accel.scaled_accel[2],
};
printf("Accel Data: %f, %f, %f (delta %f, %f, %f)\n", data.scaled_accel[0], data.scaled_accel[1], data.scaled_accel[2], delta[0], delta[1], delta[2]);
}
}
void handleGyro(void*, const mip::data_sensor::ScaledGyro& data, mip::Timestamp timestamp)
{
printf("Gyro Data: %f, %f, %f\n", data.scaled_gyro[0], data.scaled_gyro[1], data.scaled_gyro[2]);
}
void handleMag(void*, const mip::data_sensor::ScaledMag& data, mip::Timestamp timestamp)
{
printf("Mag Data: %f, %f, %f\n", data.scaled_mag[0], data.scaled_mag[1], data.scaled_mag[2]);
}
int run(mip::DeviceInterface& device)
{
mip::CmdResult result;
// Get the base rate.
uint16_t base_rate;
result = mip::commands_3dm::getBaseRate(device, mip::data_sensor::DESCRIPTOR_SET, &base_rate);
if( result != mip::CmdResult::ACK_OK )
return fprintf(stderr, "Failed to get base rate: %s (%d)\n", result.name(), result.value), 1;
// Set the message format to stream at 100 Hz.
const uint16_t sample_rate = 100; // Hz
const uint16_t decimation = base_rate / sample_rate;
std::array<mip::DescriptorRate, 3> descriptors = {{
{ mip::data_sensor::DATA_ACCEL_SCALED, decimation },
{ mip::data_sensor::DATA_GYRO_SCALED, decimation },
{ mip::data_sensor::DATA_MAG_SCALED, decimation },
}};
result = mip::commands_3dm::writeMessageFormat(device, mip::data_sensor::DESCRIPTOR_SET, descriptors.size(), descriptors.data());
if( result == mip::CmdResult::NACK_COMMAND_FAILED )
{
// Failed to set message format - maybe this device doesn't have a magnetometer.
// Try again without the last descriptor (scaled mag).
result = mip::commands_3dm::writeMessageFormat(device, mip::data_sensor::DESCRIPTOR_SET, descriptors.size()-1, descriptors.data());
}
if( result != mip::CmdResult::ACK_OK )
return fprintf(stderr, "Failed to set message format: %s (%d)\n", result.name(), result.value), 1;
// Register some callbacks.
mip::DispatchHandler packetHandler;
device.registerPacketCallback<&handlePacket>(packetHandler, mip::C::MIP_DISPATCH_ANY_DATA_SET, false);
mip::DispatchHandler dataHandlers[4];
device.registerFieldCallback<&handleAccel>(dataHandlers[0], mip::data_sensor::DESCRIPTOR_SET, mip::data_sensor::DATA_ACCEL_SCALED);
device.registerDataCallback<mip::data_sensor::ScaledGyro, &handleGyro>(dataHandlers[1]);
device.registerDataCallback<mip::data_sensor::ScaledMag, &handleMag >(dataHandlers[2]);
device.registerExtractor(dataHandlers[3], &scaled_accel);
// Enable the data stream and resume the device.
result = mip::commands_3dm::writeDatastreamControl(device, mip::data_sensor::DESCRIPTOR_SET, true);
if( result != mip::CmdResult::ACK_OK )
return fprintf(stderr, "Failed to enable datastream: %s (%d)\n", result.name(), result.value), 1;
// Resume the device to ensure it's streaming.
result = mip::commands_base::resume(device);
if( result != mip::CmdResult::ACK_OK )
return fprintf(stderr, "Failed to resume device: %s (%d)\n", result.name(), result.value), 1;
// Process data for 3 seconds.
const mip::Timestamp start_time = getCurrentTimestamp();
do
{
device.update();
std::this_thread::sleep_for(std::chrono::milliseconds(10));
} while( getCurrentTimestamp() - start_time < 3000 );
result = mip::commands_base::setIdle(device);
if( result != mip::CmdResult::ACK_OK )
return fprintf(stderr, "Failed to idle device: %s (%d)\n", result.name(), result.value), 1;
return 0;
}
int main(int argc, const char* argv[])
{
std::unique_ptr<ExampleUtils> utils;
try
{
utils = handleCommonArgs(argc, argv);
}
catch(const std::underflow_error& ex)
{
return printCommonUsage(argv);
}
catch(const std::exception& ex)
{
fprintf(stderr, "Error: %s\n", ex.what());
return 1;
}
const int result = run(*utils->device);
#ifdef MIP_ENABLE_DIAGNOSTICS
printf(
"\nDiagnostics:\n"
"\n"
"Commands:\n"
" Sent: %" PRIu16 "\n"
" Acks: %" PRIu16 "\n"
" Nacks: %" PRIu16 "\n"
" Timeouts: %" PRIu16 "\n"
" Errors: %" PRIu16 "\n"
"\n"
"Parser:\n"
" Valid packets: %" PRIu32 "\n"
" Invalid packets: %" PRIu32 "\n"
" Timeouts: %" PRIu32 "\n"
"\n"
" Bytes read: %" PRIu32 "\n"
" Valid bytes: %" PRIu32 "\n"
" Unparsed bytes: %" PRIu32 "\n",
mip_cmd_queue_diagnostic_cmds_queued(&utils->device->cmdQueue()),
mip_cmd_queue_diagnostic_cmd_acks(&utils->device->cmdQueue()),
mip_cmd_queue_diagnostic_cmd_nacks(&utils->device->cmdQueue()),
mip_cmd_queue_diagnostic_cmd_timeouts(&utils->device->cmdQueue()),
mip_cmd_queue_diagnostic_cmd_errors(&utils->device->cmdQueue()),
mip_parser_diagnostic_valid_packets(&utils->device->parser()),
mip_parser_diagnostic_invalid_packets(&utils->device->parser()),
mip_parser_diagnostic_timeouts(&utils->device->parser()),
mip_parser_diagnostic_bytes_read(&utils->device->parser()),
mip_parser_diagnostic_packet_bytes(&utils->device->parser()),
mip_parser_diagnostic_bytes_skipped(&utils->device->parser())
);
#endif // MIP_ENABLE_DIAGNOSTICS
return result;
}