Skip to content

Latest commit

 

History

History
executable file
·
112 lines (92 loc) · 7.97 KB

README.md

File metadata and controls

executable file
·
112 lines (92 loc) · 7.97 KB

Coderdata build process

All data collected for this package has been collated from stable/reproducible sources using the scripts contained here. The figure below shows a brief description of the process, which is designed to be run serially, as new identifiers are generated as data are added.

Build process

build_all.py script

This script initializes all docker containers, builds all datasets, validates them, and uploads them to figshare.

It requires the following authorization tokens to be set in the local environment depending on the use case:
SYNAPSE_AUTH_TOKEN: Required for beataml and mpnst datasets. Join the CoderData team on Synapse and generate an access token.
FIGSHARE_TOKEN: This token is required to upload to Figshare.
GITHUB_TOKEN: This token is required to upload to GitHub.

Available arguments:

  • --docker: Initializes and builds all docker containers.
  • --samples: Processes and builds the sample data files.
  • --omics: Processes and builds the omics data files.
  • --drugs: Processes and builds the drug data files.
  • --exp: Processes and builds the experiment data files.
  • --all: Executes all available processes above (docker, samples, omics, drugs, exp). This does not run the validate or figshare commands.
  • --validate: Validates the generated datasets using the schema check scripts. This is automatically included if data upload occurs.
  • --figshare: Uploads the datasets to Figshare. FIGSHARE_TOKEN must be set in local environment.
  • --high_mem: Utilizes high memory mode for concurrent data processing. This has been successfully tested using 32 or more vCPUs.
  • --dataset: Specifies the datasets to process (default='broad_sanger,hcmi,beataml,mpnst,cptac').
  • --version: Specifies the version number for the Figshare upload title (e.g., "0.1.29"). This must be a higher version than previously published versions.
  • --github-username: GitHub username matching the GITHUB_TOKEN. Required to push the new Tag to the GitHub Repository.
  • --github-email: GitHub email matching the GITHUB_TOKEN. Required to push the new Tag to the GitHub Repository.

Example usage:

  • Build all datasets and upload to Figshare and GitHub.
    Required tokens for the following command: SYNAPSE_AUTH_TOKEN, FIGSHARE_TOKEN, GITHUB_TOKEN.
python build/build_all.py --all --high_mem --validate --figshare --version 0.1.41 --github-username jjacobson95 --github-email [email protected]
  • Build only the experiment files.
    Note: Preceding steps will not automatically be run. This assumes that docker images, samples, omics, and drugs were all previously built. Ensure all required tokens are set.
python build/build_all.py --exp

build_dataset.py script

This script builds a single dataset for debugging purposes only. It can help determine if a dataset will build correctly in isolation. Note that the sample and drug identifiers generated may not align with those from other datasets, so this script is not suitable for building production datasets.

It requires the following authorization tokens to be set in the local environment depending on the dataset:

SYNAPSE_AUTH_TOKEN: Required for beataml and mpnst datasets. Follow the directions above to use gain access.

Available arguments:

  • --dataset: Required. Name of the dataset to build. At a minimum, this will build the docker images.
  • --use_prev_dataset: Optional. Prefix of the previous dataset for sample and drug ID continuation. The previous dataset files must be in the "local" directory.
  • --build: Optional. Build the desired Dataset.
  • --validate: Optional. Run the schema checker on the built files.
  • --continue: Optional. Continues from where the build left off by skipping existing files in "local" directory. Example usage:

Build the broad_sanger dataset:

python build/build_dataset.py --build --dataset broad_sanger

Build the mpnst dataset continuing from broad_sanger sample and drug IDs:

python build/build_dataset.py --build --dataset mpnst --use_prev_dataset broad_sanger

Build run schema validation on hcmi dataset:

python build/build_dataset.py --dataset hcmi --validate

Build the broad_sanger dataset but skip previously built files in "local" directory:

python build/build_dataset.py --dataset broad_sanger --continue

Data Source Reference List

Dataset Data Source Resource Authors AACR Reference Number
DepMap / Sanger PharmacoGx - CCLE The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity Jordi Barretina et al. 1
DepMap / Sanger PharmacoGx - gCSI Reproducible pharmacogenomic profiling of cancer cell line panels Peter M Haverty et al. 2
DepMap / Sanger PharmacoGx - gCSI A comprehensive transcriptional portrait of human cancer cell lines Christiaan Klijn et al. 3
DepMap / Sanger PharmacoGx - GDSC Systematic identification of genomic markers of drug sensitivity in cancer cells Mathew J Garnett et al. 4
DepMap / Sanger PharmacoGx - GDSC A Landscape of Pharmacogenomic Interactions in Cancer Francesco Iorio et al. 5
DepMap / Sanger PharmacoGx - GDSC Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells Wanjuan Yang et al. 6
DepMap / Sanger PharmacoGx - PRISM Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling Steven M Corsello et al. 7
DepMap / Sanger PharmacoGx - PRISM High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines Channing Yu et al. 8
DepMap / Sanger PharmacoGx - CTRP Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset Brinton Seashore-Ludlow et al. 9
DepMap / Sanger PharmacoGx - FIMM Consistency in drug response profiling John Patrick Mpindi et al. 10
DepMap / Sanger PharmacoGx - FIMM Individualized Systems Medicine Strategy to Tailor Treatments for Patients with Chemorefractory Acute Myeloid Leukemia Tea Pemovska et al. 11
DepMap / Sanger PharmacoGx - NCI60 The NCI60 human tumour cell line anticancer drug screen Robert H. Shoemaker 12
DepMap / Sanger PharmacoGx - CTRPv2 Correlating chemical sensitivity and basal gene expression reveals mechanism of action Rees et al. 13
DepMap / Sanger PharmacoGx - CTRPv2 Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset Seashore-Ludlow et al. 14
DepMap / Sanger PharmacoGx - CTRPv2 An Interactive Resource to Identify Cancer Genetic and Lineage Dependencies Targeted by Small Molecules Bodycombe Basu et al. 15
DepMap / Sanger COSMIC COSMIC: a curated database of somatic variants and clinical data for cancer Zbyslaw Sondka et al. 16
DepMap / Sanger Cellosaurus The Cellosaurus, a Cell-Line Knowledge Resource Amos Bairoch 17
DepMap / Sanger Cancer Cell Line Encyclopedia Quantitative Proteomics of the Cancer Cell Line Encyclopedia David P Nusinow et al 18
DepMap / Sanger Cancer Cell Line Encyclopedia The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity Jordi Barretina 19
CPTAC Clinical Proteomic Tumor Analysis Consortium Simplified and Unified Access to Cancer Proteogenomic Data Caleb M Lindgren et al. 20
HCMI NCI Genomic Data Commons Human Cancer Models Initiative - 21
BeatAML NCI Genomic Data Commons Integrative analysis of drug response and clinical outcome in acute myeloid leukemia Daniel Bottomly et al. 22
BeatAML NCI Proteomic Data Commons Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia James Pino et al. 23
MPNST NF Data Portal Chromosome 8 gain is associated with high-grade transformation in MPNST David P Nusinow et al. 24