-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathindex.ts
executable file
·202 lines (172 loc) · 6.44 KB
/
index.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
import Dexie from 'dexie';
import * as utils from './visualization/utils';
import {Visualization} from './visualization/visualization'
import {WordEmbedding} from './word_embedding';
const EMBEDDINGS_DIR = 'https://storage.googleapis.com/waterfall-of-meaning/'
const EMBEDDINGS_WORDS_URL = EMBEDDINGS_DIR + 'embedding-words.json';
const EMBEDDINGS_VALUES_URL = EMBEDDINGS_DIR + 'embedding-values.bin';
const BARBICAN_DATABASE_NAME = 'barbican-database';
let NEIGHBOR_COUNT = 30;
let emb: WordEmbedding;
const visAxes = [
['machine', 'human'], ['he', 'she'], ['bad', 'good'], ['expensive', 'cheap']
];
let vis = new Visualization(visAxes);
/**
* Norm of each axis (that is, the average of all other vocab words projected
* on to that axis.)
*/
let axisNorms: Float32Array;
/** Precalculated projections of the words on each axis. */
let projections: {[key: string]: number[]};
const textInputElement =
document.getElementById('word-input') as HTMLInputElement;
/**
* Create background words and add them to the scene.
* @param projections precalculated projections of all words.
*/
async function createBackgroundWords(projections: any) {
const words = Object.keys(projections);
for (let i = 0; i < 1000; i++) {
const word = words[i];
const sims = projections[word];
const isBackgroundWord = true;
const isQueryWord = false;
vis.addWord(word, sims, isQueryWord, isBackgroundWord);
}
}
async function projectWordsVis(word: string) {
// Similarities for each axis.
const knn = await emb.nearest(word, NEIGHBOR_COUNT * 5);
let divisiveNNs: any[] = [];
for (let i = 0; i < knn.length; i++) {
const neighbor = knn[i];
const sims = projections[neighbor];
const avgSim = utils.averageAbs(sims);
divisiveNNs.push({neighbor, sims, avgSim});
// If this is the query word, go ahead and add it.
if (neighbor === word) {
const isBackgroundWord = false;
const isQueryWord = true;
vis.addWord(word, sims, isQueryWord, isBackgroundWord);
}
}
// Take only the top n most divisive.
// Sort by the average similarity value stored above.
divisiveNNs.sort(
(a, b) => (a.avgSim < b.avgSim) ? 1 : ((b.avgSim < a.avgSim) ? -1 : 0));
divisiveNNs = divisiveNNs.slice(0, divisiveNNs.length * .75);
divisiveNNs = utils.shuffle(divisiveNNs);
for (let i = 0; i < NEIGHBOR_COUNT; i++) {
const nn = divisiveNNs[i];
// We've already added the query word above, so don't add it again.
const isQueryWord = nn.neighbor === word;
if (!isQueryWord) {
// Sleep between releasing words so that they are spread out visually.
await utils.sleep(500);
vis.addWord(nn.neighbor, nn.sims, isQueryWord, false);
}
}
}
/** Show results, either with the 3js UI or the standard UI. */
async function showResults(qWord: string = null) {
if (!qWord) {
qWord = textInputElement.value;
}
if (emb.hasWord(qWord) && !isInAxes(qWord, visAxes)) {
projectWordsVis(qWord);
textInputElement.value = '';
}
}
textInputElement.addEventListener('change', () => showResults());
// Add broadcast channel to receive inputs from input screen.
const bc = new BroadcastChannel('word_flow_channel');
bc.onmessage = message => showResults(message.data.word);
function stretchValueVis(value: number): number {
value = Math.sign(value) * Math.pow(Math.abs(value), 1 / 2) * 2;
return value;
}
/**
* Precalculate projections of all words onto the axes.
* @param words dictionary of words to save
*/
async function precalculatProjections(words: string[]) {
const dists: {[key: string]: number[]} = {};
const allProjections =
await emb.computeProjections(visAxes).array() as number[][];
for (let i = 0; i < words.length; i++) {
const word = words[i];
dists[word] = [];
for (let j = 0; j < visAxes.length; j++) {
let projectedVal = allProjections[j][i];
projectedVal -= axisNorms[j];
projectedVal = stretchValueVis(projectedVal);
dists[word].push(projectedVal);
}
}
return dists;
}
async function setup() {
utils.refreshAtMidnight();
const data = await utils.loadDatabase(
EMBEDDINGS_DIR, EMBEDDINGS_WORDS_URL, EMBEDDINGS_VALUES_URL);
// Load embeddings and words from the database
// Words should be displayed with no underlines and all in lowercase
const words = data.words;
for (let i = 0; i < words.length; i++) {
words[i] = words[i].replace(/_/g, ' ').toLowerCase();
}
// Embeddings are translated to a tf tensor.
const embeddings = data.embeddings;
let embLen = words.length;
const dimensions = embeddings.length / embLen;
const embeddingTensor = tf.tensor2d(embeddings, [embLen, dimensions]);
emb = new WordEmbedding(embeddingTensor, words);
// Parse the params from the url.
const params = utils.parseURL();
// If it's specified to only use the other input UI, hide the bar at the top.
if (('hideInput' in params) && (params['hideInput'] === 'true')) {
document.getElementById('input_bar').style.display = 'none';
}
// Calculate the axis norms.
axisNorms =
await emb.computeAverageWordSimilarity(visAxes).data() as Float32Array;
// Calculate dictionary of every word's similarity to the axes.
projections = await precalculatProjections(words);
createBackgroundWords(projections);
}
function isInAxes(word: string, visAxes: string[][]) {
for (let i = 0; i < visAxes.length; i++) {
const axis = visAxes[i];
if (axis.indexOf(word) > -1) {
return true;
}
}
return false;
}
setup();
// Call this from the JavaScript console if you want to clear the IndexedDB
// cache.
(window as any).clearDatabase = async () => {
const db = new Dexie(BARBICAN_DATABASE_NAME);
db.version(1).stores({embeddings: 'words,values'});
await db.delete();
console.log('Database deleted.');
};