-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexon_expression_functions.R
436 lines (384 loc) · 13.7 KB
/
exon_expression_functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
library(recount3)
library(snapcount)
library(tidyverse)
library(dplyr)
library(reshape2)
library(ggplot2)
library(workflowr)
library(patchwork)
#pulling out known fusions
load("~/Documents/recount_challenge_project/data/all_tcga_fusion_list.RData")
#gives tcga_full_fusion_merge
z_calc <- function (df) {
mean_df <- apply(df, 1, mean)
sd_df <- apply(df, 1, sd)
new_df <- (df-mean_df)/sd_df
rownames(new_df) <- rownames(df)
new_df
}
#For 3' genes on the negative strand
get_all_sig_z_diff <- function(gene, project_id) {
df <- raw_exon_counts_neg(gene)
proj_df <- subset_project_neg(gene, project_id, df)
kbp_df <- norm_length_neg(gene, proj_df)
diff_df <- diff_calc(kbp_df)
diff_auc_df <- norm_auc_neg(gene, project_id, diff_df)
all_z <- z_calc(diff_auc_df)
all_z
}
#For 3' genes on the positive strand
get_all_sig_z_diff_pos <- function(gene, project_id) {
df <- raw_exon_counts(gene)
proj_df <- subset_project(gene, project_id, df)
kbp_df <- norm_length(gene, proj_df)
diff_df <- diff_calc(kbp_df)
diff_auc_df <- norm_auc(gene, project_id, diff_df)
all_z <- z_calc(diff_auc_df)
all_z
}
#doing it all with one function
#title, xlabel, ylabel, legend
condensed_cum_function_pos <- function(gene, project_id) {
df <- raw_exon_counts(gene)
proj_df <- subset_project(gene, project_id, df)
cumsum_df <- cumsum_calc(gene, proj_df)
cumsum_auc_df <- norm_auc(gene, project_id, cumsum_df)
#z_calc(cumsum_auc_df)
#graph_log(gene, project_id, cumsum_auc_df, title, xlabel, ylabel, legend)
}
#creating a difference graph with one function
difference_cum_pos <- function(gene, project_id, title, xlabel, ylabel, legend) {
df <- raw_exon_counts(gene)
proj_df <- subset_project(gene, project_id, df)
cumsum_df <- cumsum_calc(gene, proj_df)
diff_df <- diff_calc(cumsum_df)
diff_auc_df <- norm_auc(gene, project_id, diff_df)
#graph_notlog(gene, project_id, diff_auc_df, title, xlabel, ylabel, legend)
z_calc(diff_auc_df)
}
calc_significant <- function(df) {
df <- df
calc <- function(n) {
sum(df[n,] > 3)
}
a <- nrow(df)
final_df <- as.data.frame(sapply(1:a, calc))
rownames(final_df) <- rownames(df)
final_df
}
summary_significant <- function(gene, project_id, df) {
all_sig <- calc_significant(df) #Count total number of significant samples at each exon
known_z <- subset_known(gene, project_id, df) #Z scores of samples known to contain fusion genes with that 3' gene
known_sig <- calc_significant(known_z) #Count number of known samples that are significant at each exon
final_df <- cbind(all_sig, known_sig) #Merge All and Known dataframes
colnames(final_df) <- c("All", "Known") #Rename columns to communicate
final_df #df output
}
#i agress that actually should have the sb separate
set_sb <- function(gene) {
sb <- QueryBuilder(compilation = "tcga", regions = gene)
sb <- set_coordinate_modifier(sb, Coordinates$Within)
sb <- set_row_filters(sb, strand == "+")
query_exon(sb)
}
#extract raw exon counts for all tcga samples
raw_exon_counts <- function(gene) {
exon <- set_sb(gene)
as.data.frame(as.matrix(assays(exon)$counts))
}
#and then we want to subset to project using these functions:
tcga_info <- function(gene) {
info <- set_sb(gene)
tcga_info <- cbind(info@colData@rownames, info@colData@listData[["gdc_cases.project.project_id"]], info@colData@listData[["gdc_cases.samples.submitter_id"]], info@colData@listData[["gdc_file_id"]], info@colData@listData[["gdc_cases.samples.sample_type"]])
tcga_info <- as.data.frame(tcga_info)
colnames(tcga_info) <- c("rail_id", "project", "tcga_id", "UCSC_id", "sample_type")
tcga_info$auc <- info@colData@listData[["auc"]]
tcga_info$tmc <- info@colData@listData[["mapped_read_count"]]
tcga_info
}
subset_project <- function(gene, project_id, df) {
info <- tcga_info(gene)
subset <- filter(info, project == project_id)
ids <- subset$rail_id
df[,ids]
}
#to get the metadata
gene_metadata <- function(gene) {
info <- set_sb(gene)
as.data.frame(rowRanges(info))
}
#function necessary to set up the df
norm_df <- function(gene, df) {
new_df <- df
metadata <- gene_metadata(gene)
new_df$width <- metadata$width
new_df
}
noncum_comp_z_score <- function(gene, project_id) {
df <- raw_exon_counts(gene)
proj_df <- subset_project(gene, project_id, df)
kbp_df <- norm_length(gene, proj_df)
diff_df <- diff_calc(kbp_df)
diff_auc_df <- norm_auc(gene, project_id, diff_df)
all_z <- z_calc(diff_auc_df)
all_sig <- calc_significant(all_z)
known_z <- subset_known(gene, project_id, all_z)
known_sig <- calc_significant(known_z)
final_df <- cbind(all_sig, known_sig)
colnames(final_df) <- c("All", "Known")
final_df
}
noncum_comp_z_score_neg <- function(gene, project_id) {
df <- raw_exon_counts_neg(gene)
proj_df <- subset_project_neg(gene, project_id, df)
kbp_df <- norm_length_neg(gene, proj_df)
diff_df <- diff_calc(kbp_df)
diff_auc_df <- norm_auc_neg(gene, project_id, diff_df)
all_z <- z_calc(diff_auc_df)
all_sig <- calc_significant(all_z)
known_z <- subset_known(gene, project_id, all_z)
known_sig <- calc_significant(known_z)
final_df <- cbind(all_sig, known_sig)
colnames(final_df) <- c("All", "Known")
final_df
}
#calculative cumulative counts, normalised by exon length if that exon is expressed
cumsum_calc <- function(gene, df) {
a <- ncol(df)
df <- norm_df(gene, df)
filt_norm <- function(n) {
subset_df <- filter(df, df[,n] > 0)
cumsum_df <- cumsum(subset_df)
norm_df <- as.data.frame(cumsum_df[,n]/cumsum_df$width*1000)
rownames(norm_df) <- rownames(cumsum_df)
colnames(norm_df) <- "rail_id"
norm_df$rn1 <- as.numeric(rownames(norm_df))
temp_df <- data.frame(rn1 = as.numeric(rownames(df)))
new_df <- left_join(temp_df, norm_df)
final_df <- as.data.frame(as.numeric(new_df[,2]))
rownames(final_df) <- new_df$rn1
colnames(final_df) <- colnames(df)[n]
final_df
}
na_df <- as.data.frame(sapply(1:a, filt_norm))
rownames(na_df) <- rownames(df)
filled_df <- na_df %>%
fill(names(na_df))
filled_df[is.na(filled_df)] <- 0
filled_df
}
#normalise by auc, subsetted by project
norm_auc <- function(gene, project_id, df) {
info <- tcga_info(gene)
info_subset <- filter(info, project == project_id)
auc <- info_subset$auc/1000000
new_df <- as.data.frame(mapply('/', df, auc))
rownames(new_df) <- rownames(df)
new_df
}
#get known ids from tcga_full_fusion_merge
get_known_ids <- function(gene, project_id) {
subset <- filter(tcga_full_fusion_merge, project == project_id)
subset_further <- filter(subset, `Second Gene` == gene)
print(subset_further$rail_id)
}
#and then subset known
subset_known <- function(gene, project_id, df) {
ids <- get_known_ids(gene, project_id)
final_df <- as.data.frame(df[,ids])
colnames(final_df) <- ids
final_df
}
#true positives
get_tp <- function(gene, df) {
ids <- get_known_ids_new(gene)
subset(df, rownames(df) %in% ids)
}
#For 3' genes on the negative strand
function(gene, project_id) {
df <- raw_exon_counts_neg(gene)
proj_df <- subset_project_neg(gene, project_id, df)
kbp_df <- norm_length_neg(gene, proj_df)
diff_df <- diff_calc(kbp_df)
diff_auc_df <- norm_auc_neg(gene, project_id, diff_df)
all_z <- z_calc(diff_auc_df)
all_z
}
#For 3' genes on the positive strand
get_all_sig_z_diff_pos <- function(gene, project_id) {
df <- raw_exon_counts(gene)
proj_df <- subset_project(gene, project_id, df)
kbp_df <- norm_length(gene, proj_df)
diff_df <- diff_calc(kbp_df)
diff_auc_df <- norm_auc(gene, project_id, diff_df)
all_z <- z_calc(diff_auc_df)
all_z
}
#For 3' genes on the negative strand
get_all_sig_z_prop_cum <- function(gene, project_id) {
df <- raw_exon_counts_neg(gene)
proj_df <- subset_project_neg(gene, project_id, df)
cumsum_df <- cumsum_calc_neg(gene, proj_df)
diff_df <- diff_calc(cumsum_df)
diff_auc_df <- norm_auc_neg(gene, project_id, diff_df)
all_z <- z_calc(diff_auc_df)
all_z
}
#For 3' genes on the positive strand
get_all_sig_z_prop_cum_pos <- function(gene, project_id) {
df <- raw_exon_counts(gene)
proj_df <- subset_project(gene, project_id, df)
cumsum_df <- cumsum_calc(gene, proj_df)
diff_df <- diff_calc(cumsum_df)
diff_auc_df <- norm_auc(gene, project_id, diff_df)
all_z <- z_calc(diff_auc_df)
all_z
}
#and then the cumulative graph - log2
graph_log <- function(gene, project_id, df, title, xlabel, ylabel, legend) {
known_df <- as.data.frame(subset_known(gene, project_id, df))
all_df <- df
n <- nrow(df)
known_df$Exon <- 1:n
known_long <- melt(known_df, id.vars = "Exon")
all_df$Exon <- 1:n
all_long <- melt(all_df, id.vars = "Exon")
ggplot(data = all_long, aes(x = Exon, y = log2(value), group = variable)) +
geom_line(color = "grey") +
geom_line(data = known_long, aes(x = Exon, y = log2(value), group = variable, color = variable)) +
geom_point(data = known_long, aes(x = Exon, y = log2(value), group = variable, color = variable)) +
ylab(ylabel) +
xlab(xlabel) +
theme(legend.position = legend) +
ggtitle(title)
}
#and then the cumulative graph - not logged
graph_notlog <- function(gene, project_id, df, title, xlabel, ylabel, legend) {
known_df <- subset_known(gene, project_id, df)
all_df <- df
n <- nrow(df)
known_df$Exon <- 1:n
known_long <- melt(known_df, id.vars = "Exon")
all_df$Exon <- 1:n
all_long <- melt(all_df, id.vars = "Exon")
ggplot(data = all_long, aes(x = Exon, y = (value), group = variable)) +
geom_line(color = "grey") +
geom_line(data = known_long, aes(x = Exon, y = (value), group = variable, color = variable)) +
geom_point(data = known_long, aes(x = Exon, y = (value), group = variable, color = variable)) +
ylab(ylabel) +
xlab(xlabel) +
theme(legend.position = legend) +
ggtitle(title)
}
norm_length <- function(gene, df) {
metadata <- gene_metadata(gene)
width <- metadata$width
as.data.frame(df/(width/1000))
}
#calculate the difference between consecutive rows
diff_calc <- function(df) {
new_df <- as.data.frame(mapply(diff, df))
a <- nrow(df)
rownames(new_df) <- rownames(df)[2:a]
new_df
}
#now I need negative versions of everything
set_sb_neg <- function(gene) {
sb <- QueryBuilder(compilation = "tcga", regions = gene)
sb <- set_coordinate_modifier(sb, Coordinates$Within)
sb <- set_row_filters(sb, strand == "-")
query_exon(sb)
}
raw_exon_counts_neg <- function(gene) {
exon <- set_sb_neg(gene)
df <- as.data.frame(as.matrix(assays(exon)$counts))
df[dim(df)[1]:1,]
}
#and then we want to subset to project using these functions:
tcga_info_neg <- function(gene) {
info <- set_sb_neg(gene)
tcga_info <- cbind(info@colData@rownames, info@colData@listData[["gdc_cases.project.project_id"]], info@colData@listData[["gdc_cases.samples.submitter_id"]], info@colData@listData[["gdc_file_id"]], info@colData@listData[["gdc_cases.samples.sample_type"]])
tcga_info <- as.data.frame(tcga_info)
colnames(tcga_info) <- c("rail_id", "project", "tcga_id", "UCSC_id", "sample_type")
tcga_info$auc <- info@colData@listData[["auc"]]
tcga_info$tmc <- info@colData@listData[["mapped_read_count"]]
tcga_info
}
subset_project_neg <- function(gene, project_id, df) {
info <- tcga_info_neg(gene)
subset <- filter(info, project == project_id)
ids <- subset$rail_id
df[,ids]
}
#to get the metadata
gene_metadata_neg <- function(gene) {
info <- set_sb_neg(gene)
df <- as.data.frame(rowRanges(info))
df[dim(df)[1]:1,]
}
norm_length_neg <- function(gene, df) {
metadata <- gene_metadata_neg(gene)
width <- metadata$width
as.data.frame(df/(width/1000))
}
#function necessary to set up the df
norm_df_neg <- function(gene, df) {
new_df <- df
metadata <- gene_metadata_neg(gene)
new_df$width <- metadata$width
new_df
}
#calculative cumulative counts, normalised by exon length if that exon is expressed
cumsum_calc_neg <- function(gene, df) {
a <- ncol(df)
df <- norm_df_neg(gene, df)
filt_norm <- function(n) {
subset_df <- filter(df, df[,n] > 0)
cumsum_df <- cumsum(subset_df)
norm_df <- as.data.frame(cumsum_df[,n]/cumsum_df$width*1000)
rownames(norm_df) <- rownames(cumsum_df)
colnames(norm_df) <- "rail_id"
norm_df$rn1 <- as.numeric(rownames(norm_df))
temp_df <- data.frame(rn1 = as.numeric(rownames(df)))
new_df <- left_join(temp_df, norm_df)
final_df <- as.data.frame(as.numeric(new_df[,2]))
rownames(final_df) <- new_df$rn1
colnames(final_df) <- colnames(df)[n]
final_df
}
na_df <- as.data.frame(sapply(1:a, filt_norm))
rownames(na_df) <- rownames(df)
filled_df <- na_df %>%
fill(names(na_df))
filled_df[is.na(filled_df)] <- 0
filled_df
}
#normalise by auc, subsetted by project
norm_auc_neg <- function(gene, project_id, df) {
info <- tcga_info_neg(gene)
info_subset <- filter(info, project == project_id)
auc <- info_subset$auc/1000000
new_df <- as.data.frame(mapply('/', df, auc))
rownames(new_df) <- rownames(df)
new_df
}
#doing it all with one function
#title, xlabel, ylabel, legend
condensed_cum_function_neg <- function(gene, project_id, title, xlabel, ylabel, legend) {
df <- raw_exon_counts_neg(gene)
proj_df <- subset_project_neg(gene, project_id, df)
cumsum_df <- cumsum_calc_neg(gene, proj_df)
cumsum_auc_df <- norm_auc_neg(gene, project_id, cumsum_df)
#z_calc(cumsum_auc_df)
#graph_log(gene, project_id, cumsum_auc_df, title, xlabel, ylabel, legend)
}
#creating a difference graph with one function
difference_cum_neg <- function(gene, project_id, title, xlabel, ylabel, legend) {
df <- raw_exon_counts_neg(gene)
proj_df <- subset_project_neg(gene, project_id, df)
cumsum_df <- cumsum_calc_neg(gene, proj_df)
diff_df <- diff_calc(cumsum_df)
diff_auc_df <- norm_auc_neg(gene, project_id, diff_df)
#graph_notlog(gene, project_id, diff_auc_df, title, xlabel, ylabel, legend)
z_calc(diff_auc_df)
}