-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_prepare.py
296 lines (262 loc) · 12 KB
/
data_prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# Lint as: python3
# coding=utf-8
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Raw data folders are all put inside the data/,
and the output prepared data are inside data/{your_naming_dir}.
Prepare data for further process.
Read data from "data/slope", "data/ring", "data/wing", "data/negative" and save them
in "/data/{your_naming_dir}/complete_data" in python dict format.
It will generate a new file with the following structure:
├── data
│ └── {your_naming_dir}
│ └── complete_data
Mix and split data.
Mix different people's data together and randomly split them into train,
validation and test. These data would be saved separately under "/data/{your_naming_dir}".
It will generate new files with the following structure:
├── data
│ └── {your_naming_dir}
│ ├── complete_data
│ ├── test
│ ├── train
│ └── valid
"""
import os
import random
import argparse
import math
import csv
import json
LABEL_NAME = "gesture"
DATA_NAME = "accel_ms2_xyz"
# folders = ["action1", "action2", "action3"]
# names = ["joseph"]
# folders = ["ring", "slope", "wing"]
# names = ["hyw", "shiyun", "tangsy", "dengyl", "zhangxy", "pengxl", "liucx", "jiangyh", "xunkai"]
def prepare_original_data(folder, name, data, file_to_read): # pylint: disable=redefined-outer-name
"""Read collected data from files."""
if folder != "negative":
with open(file_to_read, "r", encoding="utf-8") as f:
lines = csv.reader(f)
data_new = {}
data_new[LABEL_NAME] = folder
data_new[DATA_NAME] = []
data_new["name"] = name
for idx, line in enumerate(lines): # pylint: disable=unused-variable,redefined-outer-name
if len(line) == 3 or len(line) == 4:
if line[2] == "-" and data_new[DATA_NAME]:
data.append(data_new)
data_new = {}
data_new[LABEL_NAME] = folder
data_new[DATA_NAME] = []
data_new["name"] = name
elif line[2] != "-":
data_new[DATA_NAME].append([float(i) for i in line[0:3]])
data.append(data_new)
else:
with open(file_to_read, "r", encoding="utf-8") as f:
lines = csv.reader(f)
data_new = {}
data_new[LABEL_NAME] = folder
data_new[DATA_NAME] = []
data_new["name"] = name
for idx, line in enumerate(lines):
if len(line) == 3 or len(line) == 4:
if line[2] == "-" and data_new[DATA_NAME]:
data.append(data_new)
data_new = {}
data_new[LABEL_NAME] = folder
data_new[DATA_NAME] = []
data_new["name"] = name
elif line[2] != "-":
data_new[DATA_NAME].append([float(i) for i in line[0:3]])
data.append(data_new)
def generate_negative_data(data, seq_length, neg_data_num, train_ratio, val_ratio): # pylint: disable=redefined-outer-name
"""Generate negative data labeled as 'negative6~8'."""
# Big movement -> around straight line
for i in range(neg_data_num): # 100
if i > math.floor(neg_data_num * (train_ratio + val_ratio)): # i>100*(0.6+0.2)
dic = {DATA_NAME: [], LABEL_NAME: "negative", "name": "negative8"}
elif i > math.floor(neg_data_num * train_ratio): # i>100*0.6
dic = {DATA_NAME: [], LABEL_NAME: "negative", "name": "negative7"}
else:
dic = {DATA_NAME: [], LABEL_NAME: "negative", "name": "negative6"}
start_x = (random.random() - 0.5) * 2000 # 2000
start_y = (random.random() - 0.5) * 2000 # 2000
start_z = (random.random() - 0.5) * 2000 # 2000
x_increase = (random.random() - 0.5) * 10 # 10
y_increase = (random.random() - 0.5) * 10 # 10
z_increase = (random.random() - 0.5) * 10 # 10
for j in range(seq_length):
dic[DATA_NAME].append(
[start_x + j * x_increase + (random.random() - 0.5) * 6, start_y + j * y_increase + (random.random() - 0.5) * 6, start_z + j * z_increase + (random.random() - 0.5) * 6]
)
data.append(dic)
# Random
for i in range(neg_data_num):
if i > math.floor(neg_data_num * (train_ratio + val_ratio)): # i>100*(0.6+0.2)
dic = {DATA_NAME: [], LABEL_NAME: "negative", "name": "negative8"}
elif i > math.floor(neg_data_num * train_ratio): # i>100*0.6
dic = {DATA_NAME: [], LABEL_NAME: "negative", "name": "negative7"}
else:
dic = {DATA_NAME: [], LABEL_NAME: "negative", "name": "negative6"}
for j in range(seq_length):
dic[DATA_NAME].append([(random.random() - 0.5) * 1000, (random.random() - 0.5) * 1000, (random.random() - 0.5) * 1000]) # 1000 # 1000
data.append(dic)
# Stay still
for i in range(neg_data_num):
if i > math.floor(neg_data_num * (train_ratio + val_ratio)): # i>100*(0.6+0.2)
dic = {DATA_NAME: [], LABEL_NAME: "negative", "name": "negative8"}
elif i > math.floor(neg_data_num * train_ratio): # i>100*0.6
dic = {DATA_NAME: [], LABEL_NAME: "negative", "name": "negative7"}
else:
dic = {DATA_NAME: [], LABEL_NAME: "negative", "name": "negative6"}
start_x = (random.random() - 0.5) * 2000 # 2000
start_y = (random.random() - 0.5) * 2000 # 2000
start_z = (random.random() - 0.5) * 2000 # 2000
for j in range(seq_length):
dic[DATA_NAME].append([start_x + (random.random() - 0.5) * 40, start_y + (random.random() - 0.5) * 40, start_z + (random.random() - 0.5) * 40]) # 40 # 40 # 40
data.append(dic)
# Write data to file
def write_data(data_to_write, path):
"""
Writes a list of data to a specified file in JSON format.
Args:
data_to_write (list): A list of data items to be written to the file. Each item should be serializable to JSON.
path (str): The file path where the data should be written.
Returns:
None
"""
with open(path, "w", encoding="utf-8") as f:
for idx, item in enumerate(data_to_write): # pylint: disable=unused-variable,redefined-outer-name
dic = json.dumps(item, ensure_ascii=False)
f.write(dic)
f.write("\n")
# Read data
def read_data(path):
"""
Reads JSON data from a file and returns it as a list of dictionaries.
Args:
path (str): The file path to read the JSON data from.
Returns:
list
"""
data = [] # pylint: disable=redefined-outer-name
with open(path, "r", encoding="utf-8") as f:
lines = f.readlines()
for _, line in enumerate(lines): # pylint: disable=unused-variable
dic = json.loads(line)
data.append(dic)
# print("data_length:" + str(len(data)))
return data
def split_data(data, train_ratio, valid_ratio, folder_labels, rand_seed): # pylint: disable=redefined-outer-name
"""Splits data into train, validation and test according to ratio."""
train_data = [] # pylint: disable=redefined-outer-name
valid_data = [] # pylint: disable=redefined-outer-name
test_data = [] # pylint: disable=redefined-outer-name
# save the data number of label as dict
num_dic = {}
for val in folder_labels:
val = val.strip(",")
num_dic[val] = 0
num_dic["negative"] = 0
for _, item in enumerate(data): # pylint: disable=unused-variable
for i in num_dic:
if item["gesture"] == i:
num_dic[i] += 1
print(f"num_dic: {num_dic}")
# each label should have same ratio for balanced training
train_num_dic = {}
valid_num_dic = {}
for i, count in num_dic.items():
train_num_dic[i] = int(train_ratio * count)
valid_num_dic[i] = int(valid_ratio * count)
random.seed(rand_seed)
random.shuffle(data)
for _, item in enumerate(data):
for i in num_dic:
if item["gesture"] == i:
if train_num_dic[i] > 0:
train_data.append(item)
train_num_dic[i] -= 1
elif valid_num_dic[i] > 0:
valid_data.append(item)
valid_num_dic[i] -= 1
else:
test_data.append(item)
print("train_length: " + str(len(train_data)))
print("valid_length: " + str(len(valid_data)))
print("test_length: " + str(len(test_data)))
return train_data, valid_data, test_data
if __name__ == "__main__":
data = [] # pylint: disable=redefined-outer-name
parser = argparse.ArgumentParser()
parser.add_argument("--folders", type=str, nargs="+", default=["ring", "slope", "wing"], help='Read data from folders, ex: "/slope", "/ring"')
parser.add_argument("--names", type=str, nargs="+", default=["hyw", "shiyun", "tangsy", "dengyl", "zhangxy", "pengxl", "liucx", "jiangyh", "xunkai"], help="Person name")
parser.add_argument("--out_dir", type=str, default="out_dataset_1", help="What model architecture to use")
parser.add_argument("--seq_length", type=int, default=128, help="Decide the feature number of 1 dim")
parser.add_argument(
"--train_ratio",
type=float,
default=0.6,
help="train ratio of dataset",
)
parser.add_argument(
"--val_ratio",
type=float,
default=0.2,
help="valid ratio of dataset",
)
parser.add_argument(
"--rand_seed",
type=int,
default=30,
help="random seed which is a fix random list",
)
parser.add_argument(
"--neg_data_num",
type=int,
default=100,
help="generate how many negative data",
)
FLAGS, _ = parser.parse_known_args()
# user collecting normal data folders
for idx1, folder in enumerate(FLAGS.folders):
folder = folder.strip(",")
for idx2, name in enumerate(FLAGS.names):
name = name.strip(",")
raw_file = f"./data/{folder}/output_{folder}_{name}.txt"
if os.path.exists(raw_file):
print("raw data folder: {%s}" % (raw_file))
prepare_original_data(folder, name, data, raw_file)
else:
print("raw data folder: {%s} doesn't exist! <Please notice the balance of training data.>" % (raw_file))
# user collecting negative data folders. output_negative_1, output_negative_2, ... output_negative_5
for idx in range(1):
prepare_original_data("negative", f"negative{(idx + 1)}", data, f"./data/negative/output_negative_{(idx + 1)}.txt")
# auto generated negative data
generate_negative_data(data, FLAGS.seq_length, FLAGS.neg_data_num, FLAGS.train_ratio, FLAGS.val_ratio)
print("data_length: " + str(len(data)))
if not os.path.exists(f"./data/{FLAGS.out_dir}"):
os.makedirs(f"./data/{FLAGS.out_dir}")
write_data(data, f"./data/{FLAGS.out_dir}/complete_data")
# split the data
data = read_data(f"./data/{FLAGS.out_dir}/complete_data")
train_data, valid_data, test_data = split_data(data, FLAGS.train_ratio, FLAGS.val_ratio, FLAGS.folders, FLAGS.rand_seed)
write_data(train_data, f"./data/{FLAGS.out_dir}/train")
write_data(valid_data, f"./data/{FLAGS.out_dir}/valid")
write_data(test_data, f"./data/{FLAGS.out_dir}/test")