-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_augmentation.py
73 lines (65 loc) · 2.92 KB
/
data_augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Lint as: python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Data augmentation that will be used in data_load.py."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
import numpy as np
def time_wrapping(molecule, denominator, data):
"""Generate (molecule/denominator)x speed data."""
tmp_data = [[0
for i in range(len(data[0]))]
for j in range((int(len(data) / molecule) - 1) * denominator)]
for i in range(int(len(data) / molecule) - 1):
for j in range(len(data[i])):
for k in range(denominator):
tmp_data[denominator * i +
k][j] = (data[molecule * i + k][j] * (denominator - k) +
data[molecule * i + k + 1][j] * k) / denominator
return tmp_data
def augment_data(original_data, original_label):
"""Perform data augmentation."""
new_data = []
new_label = []
for idx, (data, label) in enumerate(zip(original_data, original_label)): # pylint: disable=unused-variable
# Original data
new_data.append(data)
new_label.append(label)
# Sequence shift
for num in range(5): # pylint: disable=unused-variable
new_data.append((np.array(data, dtype=np.float32) +
(random.random() - 0.5) * 200).tolist())
new_label.append(label)
# Random noise
tmp_data = [[0 for i in range(len(data[0]))] for j in range(len(data))]
for num in range(5):
for i in range(len(tmp_data)):
for j in range(len(tmp_data[i])):
tmp_data[i][j] = data[i][j] + 5 * random.random()
new_data.append(tmp_data)
new_label.append(label)
# Time warping
fractions = [(3, 2), (5, 3), (2, 3), (3, 4), (9, 5), (6, 5), (4, 5)]
for molecule, denominator in fractions:
new_data.append(time_wrapping(molecule, denominator, data))
new_label.append(label)
# Movement amplification
for molecule, denominator in fractions:
new_data.append(
(np.array(data, dtype=np.float32) * molecule / denominator).tolist())
new_label.append(label)
return new_data, new_label